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AERONAUTIC SYMBOLS 

1. FUNDAMENTAL AND DERIVED UNITS 

Metric English 

Symbol 

Unit Abbrevia-- Unit Abbrevia-
tion tion 

Length ______ l meter __________________ m foot (or mile) _________ ft (or rni) 
Time _____ ___ t second _________________ s second (or bour) _______ sec (or hr) 
Force ___ _____ F weight of) kilogram _____ kg weight of 1 pound _____ lb 

Power _______ P horsepower (metric) _____ ---------- horsepower ___________ hp 
Speed _______ V {kilometers per hour ______ kph miles per hOuL _______ mph 

meters per second _______ mps feet per second ________ fps 

2. GENERAL SYMBOLS 

Weight=mg 
Standard acceleration of gravity=9.80665 m/s2 

or 32.1740 ft/sec2 

Mass=W 
g 

Moment of inertia=mP. (Indicate axis of 
radius of gyration k by proper subscript.) 

Coefficient of viscosity 

JI Kinematic viscosity 
p Density (mass per unit volume) 
Standard density of dry air, 0.12497 kg_m-4_s2 at 15° C 

and 760 mm; or 0.002378 Ib-ft-4 sec2 

Specific weight of "standard" air, 1.2255 kg/ms or 
0.07651 lb/cu ft 

3. AERODYNAMIC SYMBOLS 

Area 
Area of wing 
Gap 
Span 
Chord 

b' 
Aspect ratio, S 

True air speed 

Dynamic pressure, ~P V' 

Lift, absolute coefficient OL= q~ 

Drag, absolute coefficient OD= q~ 

Profile drag, absolute coefficient ODO=~ 

Induced drag, absolute coefficient OD = ~~ 
j qu 

Parasite drag, absolute coefficient ODP= ~S 

Cross-wind force, absolute coefficient 00 = q~ 

o 
11 

R 

'Y 

Angle of setting of wings (relative to thrust line) 
Angle of stabilizer setting (relative to thrust 

line) 
Resultant moment 
Resultant angular velocity 

Reynolds number, p Vl wherelisalineardimen-
fJ. 

sion (e.g., for an airfoil of 1.0 ft chord, 100 mph, 
standard pressure at 15° 0, the corresponding 
Reynolds number is 935,400; or for an airfoil 
of 1.0 m chord, 100 mps, the corresponding 
Reynolds number is 6,865,000) 

Angle of attack 
Angle of downwash 
Angle of attack, infinite aspect ratio 
Angle of attack, induced 
Angle of attack, absolute (measured from zero

lift position) 
Flight-path angle 
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SUMMARY OF AIRFOIL DATA 
/, 

By IRA H. ABBOTT, ALBERT E. VON DOENHOFF, and LOUIS S. STIVERS, JR. 

SUMMARY 

Recent airfoil data for both flight and 'wind~tunnel tests have 
been collected and correlated insojar as possible. The flight 
data consist largely of drag measurements made' by the wake~ 
survey method. Most of~he data on airjoil section characteris~ 
tics were obtained in the Langley two-dimensionallow~turbulence 
pressure tunnel. Detail data necessary for the application of 
NAOA 6~series airfoils to wing design are presented in sup
plementary figures, together with recent datajor the NAOA 00-, 
14-, 24-, 44-, and 230-series airjoils. The general methods 
used to derive the basic thickness jorms jor NAOA 6- and 
7 -series airjoils and the'ir corresponding pressure distributions 
are presented. Data and methods are given jor rapidly obtain
ing the approximate pressure distributions jor N AOA four
digit, five-digit, 6-, and 7-series airfoils. 

The report includes an analysis oj the lift, drag, pitching
moment, and critical-speed characteristics of the airfoils, to
gether with a discussion of the effects of surface conditions. 
Data on high-lift devices are presented. Problems associated 
with lateral-control devices, leading-edge air intakes, and inter
ference are briefly discussed. The data indicate that the effects 
oj surface condition on the l~ft and drag characteristics are at 
least as large as the effects of the airfoil sha,pe and must be 
considered in airfoil selection and the prediction of wing charac
teristics. Airjoils permUting extensive laminar flow, such as 
the NAOA 6-series airfoils, have much lower drag coefficients 
at high speed and cru~~sing lift coefficients than earlier types of 
airfoils if, and only if, the wing surfaces are suffic1~ently smooth 
and fair. The NAOA 6-scries airfoils also ha,1'e favorable 
crit?:cal-speed character'istics and do not appear to present 
1Lnu8ual problems associated with the applicat1:on oj high-l'i:ft 
and lateral-control devices. 

INTRODUCTION 

A considerable amount of airfoil data has been accumulated 
from tests in the Langley two-dimensional low-turbulence 
tunnels. Data ha,ve also been obtained from tests both in 
other wind tunnels and in flight and include the effects of 
high-lift devices, surface irregularities, and interference. 
Some data are also available on the effects of ai.rfoil section 
on aileron characteristics. Although a large amount of these 
data has been published, the scattered nature of the data 
and the limited objectives of the reports have prevented 
adequate analysis and interpretation of the results. The 
purpose of this report is to summarize these data and to 
correlate and interpret t,hem insofar as possible. 

Recent information on the aerodynamic characteristics of 
NACA airfoils is presented. The historical development of 
NACA airfoils is briefly reviewed. New data are presented 
that permit the rapid calculation of the approximate pressure 
distributions for the older NACA four-digit and five-digit 
airfoils by the same methods used for the N ACA 6-series 
airfoils. The general methods used to derive the basic thick
ness forms for N ACA 6- and 7 -series airfoils together with 
their corresponding pressure distributions are presented. 
Detail data necessary for the application of the airfoils to 
wing design are presented in supplementary figures placed at 
the end of the paper. The report includes an analysis of 
the lift, drag, pitching~moment, and critical-speed charac:' 
teristics of the airfoils, together with a discussion of the 
effects of surface conditions. Available data on high-lift 
devices are presented. Problems associated with lateral
control devices, leading-edge air intakes, and interference 
are briefly discussed, together with aerodynamic. problems 
of application. 

Numbered figures are used to illustrate the text and to 
present miscellaneous data. Supplementary figures and 
tables are not numbered but are conveniently arranged at 
the end of the report according to the numerical designation 
of the airfoil section within the following headings: 

I-Basic Thickness Forms 
II-Data. for Mean Lines 

III-Airfoil Ordinates 
IV--Predicted Critical Mach Numbers 

V-Aerodynamic Charactel'is tics of Various Airfoil 
Sections 

These supplementary figures and tables present the basic 
data for the airfoils. 

SYMBOLS 

aspect ratio 
Fourier series coefficients 
mean-line designation, fraction of chord from lead

ing edge over which design load is uniform; in 
derivation of thickness distributions, ba,sic length 
usually considered unity 

wing span 
flap span, inboard 
flap span, outboard 
drag coefficient 
drag coefficient at zero lift 
lift coefficient 
increment of maximum lift cuused by flap deflection 
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chord 
aileron chord 
section drag coefficient 
minimum section drag coefficient 
flap chord, inboard 
flap chord, outboard 

flap-chord ratio 

section aileron hinge-moment coefficient (~) goc 
increment of aileron hinge-moment coefficient at 

constant lift 
hinge-moment parameter 
section lift coefficient 
design section lift coefficient 
moment coefficient about aerodynamic center 
moment coefficient about quarter-chord point 
section normal-force coefficient 
drag 

. loss of total pressure 
free-stream total pressure 
section aileron hinge moment 
exit height 
constant 
lift 
Mach number 
critical Mach number 
typical points on upper and lower surfaces of airfoil 

pressure coefficient (P-Po) 
go 

critical pressure coefficient 
resultant pressure coefficient; difference between 

local upper- and lower-surface pressure coefficients 
local static pressure; also, angular velocity in roll in 

pb/2V 
free-stream static pressure 
helix angle of wing tip 
free-stream dynamic pressure 
Reynolds number 
critical Reynolds number 

pressure coefficient (H~o P) 
first airfoil thickness ratio 
second airfoil thickness ratio 
free-stream velocity 
inlet velocity 
local velocity 
increment of local velocity 
increment of local velocity caused by additional 

type of load distribution 

velocity ratio corresponding to thickness i1 

velocity rat.io corresponding to thickness t2 

distance along chord 
mean-line abscissa 

XL 

Xu 

G},. 
Y 
Ya 
YL 
YI 
Yu 
Z 

z' 
a 
!lao 
.10 

s
O 

T 

abscissa of lower surface 
absciss!'\. of upper surface 

chordwise position of transition 

distance perpendicular to chord 
mean-line ordinate 
ordinate of lower surface 
ordinate of symmetrical thickness distrihution 
ordinate of upper surface 
complex variable in circle plane 
complex variable in near-cireIe plane 
angle of attack 

section aileron effectiveness parameter, ratio of 
change in section angle of attack to increment of 
aileron deflect,ion at a constant value of lift 
coefficient 

angle of zero lift 
section angle of attack 
increment of section angle of attack 
section angle of attack corresponding to design 

lift coefficient 
flap 01' aileron deflection; down deflection is positi,-e 
flap deflection, inboard 
flap deflection, outboard 
i\,irfoil parameter (IP-() 
value of E at trailing edge 
complex variable in airfoil plane 
angular coordinate of z'; also, angle of which tangent 

is slope of mean line 

. (TiP chord) 
taper ratIO Root chord 

t b I f t (
Effective Reynolds number) 

ur u ence ac or Test Reynolds number 

angular coordinate of z 
airfoil parameter determining radial co.)rdinato of z 

average value of 1ft (~17r 50
2 

.. 1ft dIP) 

HISTORICAL DEVELOPMENT 

The development of types of NACA airfoils now in com
mon use was started in 1929 with a systematic investigation 
of a family of airfoils in the Langley variable-density tunnel. 
Airfoils of this family were designated by numbers having 
four digits, such as the NACA 4412 airfoil. All airfoils of 
this family had the same basic thickness distribution (refer
ence 1), and the amount and type of camber was systemati
cally varied to produce the family of related airfoils. This 
investigation of the NACA airfoils of the four-digit series 
produced airfoil sections having higher maximum lift 
coefficients and lower minimum drag coefficients than those 
of sections developed before that time. The investigation 
also provided information on the changes in aerodynamic 
characteristics resulting from variations of geometry of the 
mean line and thickness ratio (reference 1). 
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The investigation was extended in references 2 and 3 to 
include airfoils with the same thickness distribution but 
with positions of the maximum camber far forward on the 
airfoil. These airfoils were designated by numbers having 
five digits, such as the NACA 23012 airfoil. Some airfoils 
of this family showed favorable aerodynamic characteristics 
except for a large sudden loss in lift at the stall. 

. Although these investigations were extended to include a 
limited number of airfoils with varied thickness distribu
tions (references 1 and 3 to 6), no extensive investigations of 
thickness distribution were made. Comparison of experi
mental drag data at low lift coefficients with the, skin
friction coefficients for flat plates indicated that nearly all 
of the profile drag under such conditions was attributable 
to skin friction. It was therefore apparent that any pro
nounced reduction of the profile drag must be obtained by a 
reduction of the skin friction through increasing the relative 
extent of the laminar boundary layer. 

Decreasing pressures in the direction of flow and low air
stream turbulence were known to be favorable for laminar 
flow. An attempt was accordingly made to increase the 
relative extent of laminar flow by the development of air
foils having favorable pressure gradients over a greater 
proportion of the chord than the airfoils developed in refer
ences 1, 2, 3, and 6. The actual attainment of extensive 
laminar boundary layers at large Reynolds numbers was a 
previously unsolved experimental problem requiring the 
development of new t.est equipment with very low air
stream turbulence. This work was greatly encouraged by 
the experiments of Jones (reference 7), who demons~rated 
the possibility of obtaining extensive laminar layers in flight 
at relatively large Reynolds numbers. Uncert.ainty with 
regard to factors affecting separation of the turbulent 
boundary layer required experiments to determine the 
possibility of making the rather sharp pressure recoveries 
required over the rear portion of the new type of airfoil. 

New wind tunnels were designed specifically for testing 
airfoils under conditions closely approaching flight condi
tions of air-stream turbulence and Reynolds number. The 
resulting wind tunnels, the Langley two-dimensional low
turbulence tunnel (LTT) and the Langley two-dimensional 
low-turbulence pressure tunnel (TDT), and the methods 
used for obtaining and correcting data are briefly described 
in the appendix. In these tunnels the models completely 
span the comparatively narrow test sections; two
dimensional flow is thus provided, which obviates difficulties 
previously encountered in obtaining section data from 
tests of finite-span wings and in correcting adequately for 
support interference (reference 8). 

Difficulty was encountered in attempting to design air
foils having desired pressure distributions because of the lack 
of adeql.late theory. The Theodorsen method (reference 9), 
as ordinarily used for calculating the pressure distributions 
about airfoils, was not sufficiently accurate near the leading 
edge for prediction of the local pressure gradients. In the 
absence of a suitable theoretical method, the 9-percent
thick symmetrical airfoil of the N ACA 16-series (reference 10) 

was obtained by empirical modification of the previously 
used thickness distributions (reference 4). These NACA 
16-series sections represented the first family of the low-drag 
high-critical-speed sections. 

Successive attempts to design airfoils by approximate 
theoretical methods led to families of airfoils designated 
N ACA 2- to 5-series sections (reference 11). Experience with 
these sections showed that none of the approximate methods 
tried was sufficien tly accurate to show correctly the effect 
of changes in profile near the leading edge. Wind-tunnel 
and flight tests of these airfoils showed that extensive laminar 
boundary layers could be maintained at cOplparatively large 
values of the Reynolds number if the airfoil surfaces were 
sufficiently fair and smooth. These tests also provided 
qualitative information on the effects of the magnitude of 
the favorable pressure gradient, leading-edge radius, and other 
shape variables. The data also showed that separation of 
the turbulent boundary layer over the rear of the section, 
especially with rough surfaces, limited the extent of laminar 
layer for which the airfoils should be designed. The air
foils of these early families generally showed relatively low 
maximum lift coefficients and, in many cases, were designed 
for a greater extent of laminar flow than is practical. It was 
learned that, although sections designed for an excessive 
extent of laminar flow gave extremely low drag coefficients 
near the designJift coefficient when sm09th, the drag of such 
sections became unduly large when rough, particularly at lift 
coefficients higher than the design lift. These families of 
airfoils are accordingly considered obsolete. 

The NACA 6-series basic thickness forms were derived by 
new and improved methods described herein in the section 
"Methods of Derivation of Thick.9.ess Distributions," in ac
cordance with design criterions established with the objective 
of obtaining desirable drag, critical Mach number, and 
maximum-lift characteristics. The present-report deals largely 
with the characteristics of these sections. The develop
ment of the NACA 7-series family has also been started. 
This family of airfoils is characterized by a greater extent of 
laminar flow on the lower than on the upper surface. These 
slilctions permit low pitching-moment coefficients with mod
erately high design lift coefficients at the expense of some 
reduction in maximum lift and critical Mach number. 

Acknowledgement is gratefully expressed for the expert 
guidance and many original contributions of Mr. Eastman 
N. Jacobs, who initiated and supervised this work. 

DESCRIPTION OF AIRFOILS 

METHOD OF COMBINING MEAN LINES AND THICKNESS DISTRIBUTIONS 

The cambered airfoil sections of all N ACA families con
sidered herein are obtained by combining a mean line and a 
thickness distribution. The, necessary geometric data and 
some theoretical aerodynamic data for the mean lines and 
thickness distributions may be obtained from the supple
mentary figures by the methods described for each family of 
airfoils. 
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Mean line --- ---- ---
Chord Ime ---

I 
I 
I 
\ 
\ 
\ 

::OL(:X:L-)-:Y,;L~)-----~------------- Xv =x-Yt sin 8 
XL =x+Y, sin 8 

Yu=Yc+y, cos 8 
YL =Yc -Yt cos 8 

\, Rodius fhrou9h end of chord 
'(mean-line slope ot 05 percent chord) 1.00 

SAMPLE CALCULATIONS FOR DERIVATION OF THE KACA 65,3-818, a=1.0 AIRFOIL 

X 11' 11, tan 0 sin 0 cos 0 (0) (b) 

0 0 0 ---------- "6:3i932' '6:94765-' -.005 .-01324 ;"(;0200 ' 0.33696 
.05 .03831 .01264 .18744 .18422 .98288 
.25 .08093 .03580 .06996 .06979 .99756 
.50 .08593 .04412 0 0 1.00000 
.75 .04456 .03580 -.06996 -.06979 .99756 

1.00 0 0 ---------- ---------- ----------

o Thickness distribution obtained from ordinates of the N A OA 65,3--018 airfoil. 
b Ordinates of the mean line, 0.8 of the ordinate for c',= 1.0. 
, Slope of radius through end of chord. 

YI sin 0 y, cos 0 I Xu I 1/U XL 1!L 

0 0 0 0 0 0 
.00423 .01255 .ooon .01455 .00923 -.01055 
.00706 .03765 .04294 .05029 . C5706 -.02501 
. 00565 .08073 .24435 .11653 .25565 -.04493 

0 .08593 .50000 .13005 .50000 -.04181 
-.00311 .04445 .75311 .08025 .74689 -.00865 
a a 1.00000 0 1. 00000 a 

FIGURE I.-Method of combining mean lines and basic thickness forms. 

The process for combining a mean line and a thickness. 
distribution to obtain the desired cambered airfoil section is 
illustrated in figure 1. The leading and trailing edges are 
defined as the forward and rearward extremities, respectively, 
of the mean line. The chord line is defined as the straight 
line connecting the leading and trailing edges. Ordinates of 
the cambered airfoil are obtained by laying off the thickness 
distribution perpendicular to the mean line. The abscissas, 
ordinates, and slopes of the mean line are designated as Xc, 
Yc, and tan (J, respectively. If Xu and Yu represent, respec
tively, the abscissa and ordinate of a typical point of the 
upper surface of the airfoil and Y t is the ordinate of the 
symmetrical thickness distribution at chordwise position X, 

the upper-surface coordinates are given by the following 
relations: 

xu=X-Yt sin (J (1) 

(2) 

The corresponding expressions for the lower-surface coordi
nates are 

(3) 

(4) 

The center for the leading-edge radius is found by drawing 
a line through the end of the chord at the leading edge with 
the slope equal to the slope of the mean line at that point 
and laying off a distance from the leading edge along this line 
equal to the leading-edge radius. This method of construc
tion causes the cambered a.irfoils to p.roject slightly forward 

of the leading-edge point. Because the slope at the leading 
edge is theoretically infinite for the mean lines having a 
theoretically finite load at the leading edge, the slope of the 
radius through the end of the chord for such mean lines is 

usually taken as the slope of the mean line at ~=0.005. This 
c 

procedure is justified by the manner in which the slope 
increases to the theoretically infinite value as x/c approaches 
o. The slope increases slowly until very small values of x/c 
are reached. Large values of the slope are thus limited to 
values of x/c very close to 0 and may be neglected in practical 
airfoil design. 

Tables of ordinates are included in the supplementary data 
for all airfoils for which standard characteristics are presented. 

NACA FOUR-DIGIT-SERIES AIRFOILS 

Numbering system.-The numbering system for the 
NACA airfoils of the four-digit series (reference 1) is based 
on the airfoil geometry. The first integer indicates the 
maximum value of the mean-line ordinate Yc in percent of the 
chord. The second integer indicates the distance from the 
leading edge to the location of the maximum camber in 
tenths of the chord. The last two integers indicate the 
airfoil thickness in percent of the chord. Thus, the NACA 
2415 airfoil has 2-percent camber at 0.4 of the chord from the 
leading edge and is 15 percent thick. 

The first two integers taken together define the mean line. 
for example, the N ACA 24 mean line. The symmetrical air
foil sections representing the thickness distribution for a 
family of airfoils are designated by zeros for the first two 
integers, as in the case of the N ACA 0015 airfoil. 
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Thickness distributions.---Data for the NACA 0006,0008, 

0009, 0010, 0012, 0015, 0018, 0021, and 0024 thickness 

distributions are presented in the supplementary figures_ 

Ordinates for intermediate thicknesses may be obtained 

correctly by scaling the tabulated ordinates in proportion to 

the thickness ratio (reference 1). The leading-edge radius 

varies as the square of the thickness ratio. Values of 

(vIV)2, which is equivalent to the low-speed pressure distri

bution, and of vlV are also presented. These data were 

obtained by Theodorsen's method (reference 9). Values of 

the velocity increments t::.va/F induced by changing angle 01 

attack (see section "Rapid Estimation of Pressure Distribu

tions") are also presented for an additional lift coefficient of 

approximately unity. Values of the velocity ratio v/V for 

intermediate thickness ratios may be obtained approxi

mately by linear scaling of the velocity increments obtained 

from the tabulated values of v/V for the nearest thickness 

ratio; thus, 

(5) 

Values of the velocity-increment ratio !::.Va/V may be obtained 

for intermediate thicknesses by interpolation. 

Mean lines.-Data for the NACA 62,63,64,65,66, and 67 

mean lines are presented in the supplementary figures. 

The data presented include the mean-line ordinates yo, the 

slope dYeldx, the design lift coefficient eli and the corre

sponding design angle of attack ai, the moment coefficient 

cmei4 ' the resultant pressure coefficient PR , and the velocity 

ratio !::.v/V. The theoretical aerodynamic characteristics 

were obtained from thin-airfoil theory. All tabulated values 

for each mean line, accordingly, vary linearly with the maxi

mum ordinate Ye, and data for similar mean lines with 

different amounts of camber within the usual range may be 

obtained simply by scaling the tabulated values. Data 

for the NACA 22 mean line may thus be obtained by multi

plying the data for the N ACA 62 mean line by the ratio 2: 6, 

and for the NACA 44 mean line by multiplying the data for 

the NACA 64 mean line by the ratio 4:6. 

NACA 'FIVE.DIGIT-SERIES AIRFOILS 

Numberinl~ system.-The numbering system for airfoils of 

the NACAlive-digit series ,is based on a combination of 

theoretical aerodynamic characteristics and geometric char

acteristics (references 2 and 3). The first integer indicates 

the amount ,pf camber in terms of the relative magnitude of 

the design Wit coefficient; the design lift coefficient in tenths 

is thus three-halves of the first integer. The second and third 

integers together indicate the distance from the leading edge 

to the locatlon of the maximum camber; this distance in 

percent of the chord is one-half the number represented by 

these integers. The last two integers indicate the airfoil 

thickness in percent of the chord. The NACA 23012 airfoil 

thus has a, ,aesign lift coefficient of 0.3, has its maximum 

camber at U percent of the chord, and has a thickness ratio 

of 12 percen~. 

Thickness distributions.--The thickness distributions for 

airfoils of the N ACA five-digit series are the same as those 

for airfoils of the NACA four-digit series. 

Mean lines.-Data for the NACA 210, 220, 230, 240, and 

250 mean lines are presented in the supplementary figures 

in the same form as for the mean lines given herein for the 

four-digit series. All tabulated values for each mean line 

vary linearly with the maxImum ordinate or with the design 

lift coefficient. Thus, data for the NACA 430 mean line 

ma,y be obtained by multiplying the data for the NACA 230 

mea,n line by the ratio 4:2 and for the NAOA 640 mean line 

by multiplying the data for the NACA 240 mean line by 

the ratio 6: 2. 
NACA l-SERIES AIRFOILS 

Numbering systern.-The NACA I-series airfoils are des

ignated by a five-digit 'number-as, for example, the 

NACA 16-212 section. The first integer represents the 

series designation. The second integer indicates the dis

tance in tenths of the chord from the leading edge to the 

position of minimum pressure for the symmetrical section 

at zero lift. The first number following the dash indicates 

the amount of camber expressed in terms of the design lift 

coefficient in tenths, and the last two numbers together 

indicate the thickness in percent of the chord_ The com

monly used sections of this family have minimum pressure 

at 0.6 of the chord from the leading edge and are usually 

referred to as the NACA 16-seI'ies sections. 

Thickness distributions.-Data for the NACA 16-006, 

16-009, 16-012, 16-015, 16-018, and 16-021 thickness 

distributions (reference 10) are presented in the supplemen

tary figures. These data are similar in form to the data for 

those airfoils of the N ACA four-digit series, and data for 

intermediate thickness ratios may be obtained in the same 

manner. 
Mean lines.-The NACA 16-series airfoils as commonly 

used are cambered with a mean line of the uniform-load 

type (a=1.0), which is described under the section for the 

N ACA 6-series airfoils that follows. If any other type of 

mean line is used, this fact should be stated in the airfoil 

d.esignation. 
NACA 6-SERIES AIRFOILS 

Numbering system.-The N ACA 6-set'ies airfoils are usu

ally designated by a six-digit number together with a state

ment showing the type of mean line used. For example, 

in the designation NACA 65,3-218, a=O.5, the "6" is 

the series designation. The" 5" denotes the chordwise 

position of minimum pressure in tenths of the chord behind 

the leading edge for the basic symmetrical section at zero 

lift. The" 3" following the comma gives the range of lift 

coefficient in tenths above and below the design lift coefficient 

in which favorable pressure gradients exist on both surfaces. 

The "2" following the dash gives the design lift eoefficient 

in tenths. The last two digits indicate the airfoil thickness 

in percent of the chord. The designation" a=0.5" shows 

the type of mean line used. When the mean-line designa

tion is not given, it is understood that the uniform-load 

mean line (a= 1.0) has been used. 
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When the mean line used is obt.ained by combining more 
t.han one mean line, the design lift. coefficient used in t.he 
designation is the algebraic sum of the design lift coefficients 
of the mean lines used, and the mea.n lines are described in 
the statement following the number as in the following case: 

NACA 65,3-218 ' {
a=0.5 CII=O . .3 } 

a=l.O, Cli =-0.1 
Air'foils having a thickness distribution obtained by linearly 

increasing or decreasing the ordinates of one of the originally 
derived thickness distributions are designated as in the follow
ing example: 

NACA 65(318)-217, a=0.5 

The significance of all of the numbers except those in the 
parentheses is the same as before. The first number and the 
last two numbers enclosed in the parentheses denote, respec
tively, the low-drag range and the thickness in percent of 
the chord of the originally derived thickness distribution. 

The more recent NACA 6-sories airfoils are derived as 
members of thickness families having a simple relationship 
between the conformal transformations for airfoils of different 
thickness ratios but having minimum pressure at the samt;\ 
chord wise position. These airfoils are distinguished from 
thp earlier individually derived airfoils by writing the num
ber indicating the low-drag ra.nge as a. subscript; for exa.mple, 

NACA 653-218, a=0.5 

For NACA 6-se1'ies airfoils having a thickness ratio less 
than 0.12 of the chord, the subscript number indicating the 
low-drag range should be less than unity. Rather than usc 
a fmctional number, a subscript of unity was originally em
ployed for these airfoils. Since this usa.ge is not consistent 
with the previous definition of a number indicating the low
drag range, the designations of a.irfoil sections having a thick
ness ratio less than 0.12 of the chord are now given without 
such a number. As an example, an N AOA 6-series airfoil 
having a thickness ratio of 0.10 of the chord would be 
designated: 

NAOA 65-210 

Ordinates for the basic thiclniess distributions designated by 
a subscript are slightly different from those for the corre
sponding individually derived thickness distributions. As 
before, if the ordinates of the basic thickness distribution 
have been changed 1)Y a factor, the low-drag range and thick
ness ratio of the original thickness distribution are enclosed 
in parentheses as follows: 

NAOA 65(318)-217, a=O.5 

If, howevPJ', the ordinates of a basic thickness distribution 
having a thickness ratio less than 0.12 of the chord have been 
changed by a factor, 'the number indicating the low-drag 
range is eliminated and only the original thickness ratio is 
enclosed in parentheses as follows: 

NACA 65(10)-211 

If the design lift coefficient in tenths or the airfoil thickness 
in percent of chord are not whole integers, the numbers 
giving these quantities are usually enclosed in parentheses as 
in the following designation: 

NACA 65(318)-(1.5) (16.5), a=O.5 
Some early experimental airfoils are designated by the in
sertion of the letter "x" immediately preceding the hyphen 
as in the designation 66,2x-115. 

Thickness distributions.-Datafor available N AOA 6-series 
thickness forms are presented in the supplementary 
figures. These data are comparable with the similar data 
for airfoils of the NACA four-digit series, except that ordi
nates for intermediate thicknesses may not be correctly ob
tained by scaling the tabulated ordinates proportional to the 
thickness ratio. This method of changing the ordinates by 
a factor will, however, produce shapes satisfactorily approx
imating members of the family if the change in thickness 
ratio is small. Values of v/V and 6.v./V for intermediate 
thickness ratios may be approximated as described for the 
NACA four-digit series. 

Mean lines.-The mean lines commonly used with the 
NACA 6-series airfoils produce a uniform chordwise loading 
from the leading edge to the point ~=a and a linearly de
creasing load from this point to the trailing edge. Data 
for NAOA mean lines with values of a equal to 0, 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 are presented in the 
supplementary figures. The ordinates were computed by 
the following formula, which represents a simplification of 
the original expression for mean-line ordinates given in 
reference 11: 

x x x~ -c loge c+ U- h c I (6) 

where 

1 [1 1 ] h=- - (1-a)210g (l-a)-- (1-a)2 +U I-a 2 . e 4 

The ideal angle of attack IXI corresponding to the design 
lift coefficient is given by 

Cit 
cx(==-h 27l'(a+D 

The data are presented for a design lift coefficient Cit 
equal to unity. All tabulated values vary directly with 
the design lift coefficient. Oorresponding data for similar 
mean lines with other design lift coefficients may accordingly 
be obtained simply by multiplying the tabulated values by 
the desired design lift coefficient. 

In order to camber NAOA 6-series airfoils, mean lines are 
usually used having values of a, equal to or greater than the 
distance from the leading edge to the location of minimum 
pressure for the selected thickness distribution at zero lift. 
For special purposes, load distributions other than those 
corresponding to the simple mean lines may be obtained by 
combining two or more types of mean line having positive or 
negative values of the design lift coefficient. The geometric 
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and aerodynamic characteristics of such combinations may be 
obtained by algebraic addition of the values for the compo
nent mean lines. 

NACA 7-SERIES AIRFOILS 

Numbering system.-The NACA 7-series airfoils are desig
nated by a number of the following type (reference 12): 

NACA 747A315 

The first number "7" indicates the series number. The 
second number "4" indicates the extent over the upper sur
face, in tenths of the chord from the leading edge, of the 
region of favorable pressure gradient at the design lift coeffi
cient. The third number "7" indicates the extent over the 
lower surface, in tenths of the chord from the leading edge, 
of the region of favorable pressure gradient at the design lift 
coefficient. The significance of the last group of three num
bers is the same as for the previous NACA 6-series airfoils. 
The letter "A" which follows the first three numbers is a 
serial letter to distinguish different airfoils having parameters 
that would correspond to the same numerical designation. 
For example, a second airfoil having the same extent of 
favorable pressure gradient over the' upper and lower sur
faces, the same design lift coefficient, and the same maximum 
thickness as the original airfoil but having a different mean
line combination or thickness distribution would have the 

20 

- r- f---

" -I.B 

V k" ,NACA 747A315 

V '(upper surface) 
II I I I 

1.6 

l 1 

serial letter "B." Mean lines used for the NACA 7-series 
airfoils are obtained by combining two or more of the pre
viously described mean lines. A list of the thickness dis
tributions and mean lines used to form these airfoils is pre
sented in table 1. The basic thickness distribution is given 
a designation similar to those of the final cambered airfoils. 
For example, the basic thickness distribution for the 
NACA 747A315 and 747A415 airfoils is given the designation 
NACA 747 A015 even though minimum pressure occurs at O.4c 
on both upper and lower surfaces at zero lift. Combination 
of this thickness distribution with the mean lines listed in 
table I for the NACA 747A315 airfoil changes the pressure 
distribution to the desired type as shown in figure 2. 

Thickness distributions.-Data for available NACA 7-
series thickness distributions are presented in the supple
mentary figures. These thickness distributions are indi
vidually derived and do not form thickness families. The 
thickness ratio may, however, be changed a moderate 
amount-say 1 or ,2 percent-by multiplying the tabulated 
ordinates by a suitable factor without seriously altering their 
characteristic features. Values of (V/V2) and of v/V for thinner 
or thicker thickness distributions may be approximated by 
the method of equation (5). If the change in thickness ratio 
is small, tabulated values of I1Va/V may be applied'directly 
with reasonable a.ccuracy. 

" "" "-
I 

~ ~. _I 1 1 ------, "" . NACA 747AOl5 basic 

1.4 
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! 
(v)'1.0 I 

! 
I 
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r:-:JCA I 74~A3~5 
(lower surface) 
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FIGURE 2.-Theoretical pressure distribution for the NACA 747A315 airfoil section at the design lift coefficient and the NACA 747AOlij husir thickness dis:l'ibuUOll. 

TABLE I.-ANALYSIS OF AIRFOIL DE.RIVATION 

Mellon-line combination 1 
Airfoil Basic thickness 1 ____ -;-___ --;-____ , ___ _,_----;--------.-----;-----,------;----,---1 

designation form 
a=O a=O.l a=0.2 a=0.3 

747A315 ________ 747A015 ____________________________ "" ______________________________ _ 
747A415 ________ 747A015 ____________________________________________________________ _ 

a=0.4 

0.763 
.763 

a=0.5 a=0.6 

I The numbers in the various columns headed "Mean-line combination". indicate the magnitude orthe design lift coefficient used. 

a=0.7 a=0.8 a=0.9 a=1.0 

=O:!~ ::::::::::::: :::::: ::::::: ----ii:ioo----
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THEORETICAL CONSIDERATIONS 

PRESSURE DISTRIBUTION~ 

A knowledge of the pressure distribution over an airfoil is 
desimble for structural design and for estimation of the 
critical Mach number and moment coefficient if tests are not 
available. The pressure distribution also exerts a strong 
or predominant influence on the boundary-layer flow and, 
hence, on the airfoil characteristics. It is therefore usually 
advisable to relate the airfoil characteristics to the pressure 
distribution rather than directly to the airfoil geometry. 

Methods of derivation of thickness distributions.-As 
mentioned in the section "Historical Development," the 
basic symmetrical thickness distributions of the N ACA 6-
and 7-series airfoils, together with their corresponding pres
sure distributions, are derived by means of conformal trans
formations. The transformations used to relate the known 
flow about a circle to that about an airfoil section were 
developed by Theodorsen in reference .9. Figure 3 shows 
schematically the significance of the various phases of the 
process. 

The circle about Which the flow is originally calculated has 
its center at the origin and a radius of aiD. The equation of 

Z-p/one \-------jL----"---l 

=-.'= e fll ->;.)4-I(S-tJ) 

z 

Z-p/one f-------,fL------'L----, 

f=Xri y 

FIGURE 3.-Transformations used to derive airfoils nnd calculate pressure distributionR. 

this circle in complex coordinates is 

z=aefo+iq, 

where 

z complex variable in circle plane 

¢ angular coordinate of z 

a basic length usually considered unity 

1/10 constant determining radius of, circle 

(7) 

This true circle is transformed into an arbitrary, almost 
circular curve by the relation 

~, 

='_= e(f-fol+i{O-q,) 
z 

the equation of the almost circular curve is 

z' =aef +iO 

where 

z' complex variable in near-circle plane 

aef radial coordinate of z' 

f} angular coordi.nate of z' 

(8) 

(9) 

In order Jor the transformation (8) to be conformal, it is 
necessary that the quantity (f}-r/» (given the symbol -E) 
be the conjugate function of (1/I-if;0); that is, if E is represented 
by a Fourier series of the form 

'" '" e=L: An sin n</>-L: Bn cos n</> 
1 1 

then (if;-1/Io) is given by the relation 

'" '" 
(1/1-1/10)="'22 An cos nr/>+::8 Bn sin nr/> 

1 1 

This relationship indicates that, if the function E(r/» is given, 
(1/1-1/10) can be calculated as a function of r/>. Means of 
performing this calculation are presented in reference 13. 
The transformation relating the almost circular curve to 
tbe airfoil shape is 

(10) 

where f is the complex va.'iable in the airfoil plane. The 
coordinates of the airfoil x and yare the real and imaginary 
parts of f, respectively. These coordinates are given hy the 
relations 

.c= 2a cosh 1/1 cos 8 

y=2a sinh 1/1 sin f} 

(11) 

(12) 

The velocity distribution in terms of the airfoil parameters 
1/1 and € is given exactly for perfect fluid flow by the expression 

v [sin (ao+¢)+~in (aO+€TE)] efO 

V= ~ (sinh21/1+sin28) [( 1-:;y +(~~)] (13) 
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where 

local velocity over surface of airfoil 
':I. 

v free-stream velocity r 

ao section angle of attack 

0/0 average value of 0/ (i1f'L
2

1J" 0/ de/> ) 

ETE value of e at trailing edge 

The basic symmetrical shapes were derived by assuming 

suitable values of de/de/> as.a function of e/>. These values were 

chosen on the basis of pr~vious experience and are subject to 

the eonditions that 

L1J"~=o 

and de/de/> at e/> is equal to df/dcp at -cp. These conditions 

are hecessary for obtaining closed 'symmetrical shapes. 

Values of fCe/» were obtained simply by integrating ;; de/>. 

Values of o/(cp) were found by obtaining the conjugate of the 

curve of eCe/» and adding a value % suffieient to make the. 

,'alue of 0/ equal to zero at cp=1f'. This condition assures a 

sharp trailing-edge sbape. 
Inasmuch as small changes in the velocity distribution at any 

point of the surface are appr~ximately proportional to 1 + J; 
(see refrrence 14), the initially assumed values of df/de/> were 

altered by a process of successive approximations until the 

desired type of velocity distribution was obtained. After the 

final values of 0/ and e were obtained, the ordinates of thr basic 

thickness distribution were computed by equations (11) 

and (12). 
When these computations were made, it appeared that there 

was an optimum value of the leading-edge radius dependent. 

upon the airfoil thickness and the position of minimum 

pressure. If the leading-edge radius was too small, a pre

mature peak in the pressure distribution occurred in the 

immediate v-icinity of thr leadi.ng edge as the angle of att.ack 

was increasrd. If the leading-edge radius was too large, a 

premature peak occurred a few prrcent of the chord behind thr 

lrading edge. With the COrI'rct l(lading-edge radius j t.he 

pressure distribut.ion became nearly flat over the forward 

portion of the airfoil before the normal leading-edge peak 

formed at the higher lift coefficients. Curves of the param

eters 0/, f, dl/;/de/>, de/de/> plotted against e/> for the NACA 

643-018 airfoil section are given in figure 4. 
Experience has shown tl~at, ,,,,hen the thickness ratio of an 

originally derived basic form was increased merely by multi

plying all the ordinates by a constant factor, an unnecessarily 

large decrease in the critical speed of the resulting section 

occurred. Reducing the thickness ratio in a similar manner 

caused an unnecessarily large decrease in the low-drag range. 

For this reason, each of the earlier N ACA 6-series sections was 

individually derived. It was later found that it was possible 
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FIGURE 4.-Variation of airfoil parameters,p, E'~' !~ with", for ;he XACA 643-018 airloil. 

section basic thickness form. 

t.o derive basic airfoil parameters I/; and e that could be 

multiplied by a eonstant faetor to obtain airfoils of various 

thickness ratios, without ha.ving the aforementioned limita

tions in the resulting sect.ions. Each of the more recent 

families of NACA 6-series airfoils, in which numerical sub

scripts are used in the designation, having minimum pressure 

at a given chordwise position was obtained by scaling up and 

down the basic values of the airfoil parameters 1/;, and E. 

Theoretical pressure distributions (indicated by (V)) 
for a, family of N ACA 65-series a.irfoils covering n range of 

thickness ratios are given in figure .5 (a). This figure shows 

the typical increase in the magnitude of the favorable pressure 

gradient, increase in maximum velocity over the surface, and 

increase in the relative pressure recovery over the rear portion 

of the airfoil'with increase in thickness ratio. Figure 5 (b) 

shows the pressure distrihution for a series of bnsic thickness 

forms having a thickness ratio of 0.15 and having minimum 

pressure at various chordwise positions. The value of the 

minimum pressure coefficient is seen to decrease and the 

magnitude of the pressure recovery over the renr portion of 

the airfoil to increase with the rearward movement of the 

point of minimum pressure. 
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FIGURE 5.-Theoretical presmre distributions for some basic symmetrical NACA 6-series airfoils at zero lift. 

The pressure distribution for one of the basic symmetrical 
thickness distributions at various lift coefficients is shown in 
figure 6. At zero lift the pressure distributions over the 
upper and lower surfaces are the same. As the lift coefficient 
is increased, the slope of the pressure distribution over the 
forward portion of the upper surface decreases until it becomes 
flat at a lift coefficient of 0.22 (the end of the low-drag range). 
As the lift coefficient is increased beyond this value, the :usual 
peak in the pressure distribution forms at the lead~ng edge. 

Rapid estimation of pressure distributions.-In the dis
cussion that follows, the term "pressure distribution" is used 
to signify the distribution of the static pressures on the upper 

5.0 

4.0 

3.0 

(v! 
2.0 

FIGURE 6.-Theoretical pressure distribution for the N ACA 65.-015 airfoil at several lift 
. coefficients. 

and lower surfaces of the airfoil along the chord. The term 
"load distribution" is used to signify the distribution along 
the chord of the normal force resulting from the difference in 
pressure on the upper and lower surfaces. 

The pressure distribution about any airfoil in potential 
flow may be calculated accurately by a generalization of the 
methods of the previous section. Although this method is 
not unduly laborious, the computations required are too 
long to permit quick and easy calculations for large numbers 
of airfoils .. The need for a simple method of quickly obtaining 
pressme distributions with engineering accuracy has led to 
the development of a method (reference 15) combining 
features of thin- and thick-airfoil theory. This simple 
method makes use of previously calculated characteristics 
of a limited number of mean lines and thickness distributions 
that may be combined to form large numbers of airfoils. 

Thin-airfoil theory (references 16 to 18) shows that the 
load distribution of a thin airfoil may be considered to consist 
of: (1) a basic distribution at the ideal angle of attack and 
(2) an additional distribution proportional to the angle of 
attack as measured from the ideal angle of attack. 

The first load distribution is a function only of the shape of 
the thin airfoil, or (if the thin airfoil is considered to be a 
mean line) of the mean-line geometry. Integration of this 
load distribution along the chord results in a normal-force 
coefficient which, at small angles of attack, is substantially 
equal to a lift coefficient Cit, which is designated the ideal 
or design lift coefficient. If, moreover, the camber of the 
mean line is changed by multiplying the mean-line ordinates 
by a constant factor, the resulting load distribution, the 
ideal or design angle of attack at and the design lift coefficient 
Cli may be obtaIned simply by mUltiplying the original values 
by the same fnctor. The characteristics of a large number of 
mean lines are presented in both graphical and tabular form 
in the supplementary figures. The load-distribution data 
are presented both in the form of the resultant pressure. 
coefficient PR and in the form of the corresponding velocity
increment ratios !.lv/V. For positive design lift coefficie~ts, 
these velocity-increment ratios are positive on the upper 
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!'Iudace and negative on the lower surface; the opposite is 

true for negative design lift coefficients. 

The second load distribution, which results from changing 

the angle of attack, is designated herein the" additional load 

distribution" and the corresponding lift coefficient is deRig

nated the" additional lift coefficient." This additional load 

distribution contributes no moment about the quarter-chord 

point and, according to thin-airfoil theory, is independent of 

the airfoil geometry except for angle of attack. The addi

tional load distribution obtained from thin-airfoil theory is 

of limited practical application, however, because this simple 

theory leads to infinite values of the velocity at the leading 

edge. This _difficulty is obviated by the exact thick-airfoil 

theory (reference 9) which also shows that the additional load 

distribution is neither completely independent of the aidoil 

shape nor exactly a linear function of the lift coefficient. 

For this reason, the additional load distribution ha,s been 

calculated by the methods of reference 9 for each of the thick

ness distributions presented in the supplementary figures. 

These data are presented in the form of velocity-increment 

rat.ios AVa/V corresponding to an additional lift coefficient of 

approximately unity. For positive additional lift coeffi

c:ients, these. velocity-increment ratios are positive on the 

upper surfaces and negat.ive on the lower surfaces; the 

opposite is true for negative additional lift coefficients. 

In additi~n to the pressure distributions associated with 

thes~ two load distributions, another pressure' distribution 

exists which is associated with the basic symmetrical thick

ness form or thickness distribution of the airfoil. This pres

sure distribution has been calculated by the methods 

described in the previous section for the condition of zero 

lift and is presented in the supplementary figures as ('f; )2, 
which is equivalent at low Mach numbers to the pressure 

coefficient S, and as the local velocity ratio VIV. This 

local velocity ratio is always positive and is the same for 

corresponding points on the upper and lower surfaces of the 

thickness form.· 
The velocity distribution about the airfoil is thus considered 

to be composed of three separate and independent com

ponents as follows: 
(1) The distribution corresponding to the velocity dis

tribution over the basic thickness form at zero angle of 

attack 
(2) The distribution corresponding to the design load 

distribution of the mean line 
(3) The distribution corresponding to the additional load 

distribution associated with angle of attack 

The velocity-increment ratios AviV and At'a/V correspond

ing to components (2) and (3) are added to the velocity 

ratio corresponding to component (1) to obtain the total 

velocity at one point, from which the pressure coefficient S 

is obtained; thus, 
(14) 

When this formula is used, values of the ratios corresponding 

to one value of x are added together and the resulting value 

of the pressure coefficient S is assigned to the airfoil surface 

It t the same value of X. 

The values of. v/V and of ~v/V in equation (14) should, 

of course, correspond to the ·airfoil geometry. Methods 

of obtaining the proper values of these ratios from the values 

tabulated in the supplementary figures are presented in the 

previous section "Description of Airfoils. " 

When the ratio AvalV has the value of zero, the resulting 

distribution of the pressure coefficient S will correspond 

approximately to the pressure distribution of the airfoil 

section at the design lift coefficient Cl i of the mean line, and 

the lift coefficient may be assigned this value as a first ap

proximation. If the pressure-distribution diagram is inte

grated, however, the value of Cl will be found to be greater 

than Cli by an amount dependent on the thickness ratio of 

the basic thickness form. . 

The pressure distribution will usually be desired at some 

specified lift coefficient not corresponding to Cli' For this 

purpose the ratio ~va/V must be assigned some value .ob

tained by multiplying the tabulated value of this ratio by a 

factor j(a). For a first approximation this factor may be 

assigned the value 
(15) 

where CI is the lift coeffici(1nt for which the pressure distribu

tion is desired. If greater accuracy is desired, the value of 

j(a) may be adjusted by trial and error to produce the 

actual desired lift coefficient as determined by integration 

of the pressure-distribution diagram. 
Although this method of superposition of velocities has 

inadequate theoretical justification, experience has shown 

that the results obtained are adequate for engineering use. 

In fact, the results of even the first approximations agree 

well with experimental data and are tl,dequate for at least 

preliminary consideration and selection of airfoils. A com

parison of a first-approximation theoretical pressure distri

bution with an experimental distribution is shown in figure 7. 
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FIGURE 7.-Comparison of theoretical and experimental preS3ure distributions for the N ACA 

66(215}-216, a = 0.6 airfoil. c, = 0.23. 
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Some discrepancy naturally occurs between the results of 
experiment and of any theoretical method based on potential 
flow'because of the presence of the boundary layer. These 
effects are small, however, over the range of lift coefficients 
for which the boundary layer is thin .and the drag coefficient 
ifllow. 

Numerical examples.-The following numerical examples 
are included to illustrate the method of obtaining the first
approximation pressure distributions: 

Example 1: Find the pressure coefficient S at the station 
x=0.50 on the upper and lower surfaces of the NACA 
653-418 airfoil at a lift coefficient of 0.2. 

From the description of the NACA 6-series airfoils, it is 
determined that this airfoil is obtained by combining the 
NACA 653-018 basic thickness form with the a= 1.0 .type 
mean line cambered to a design lift coefficient of 0.4. The 
following data are obtained from the supplementary figures 
for this thickness form and mean line at x=0.50: 

v 
V=1.235 

~=0.157 

~=0.250 

The desired. value of AVa/V is computed as follows by use of 
equation (15): 

A~a=(0.157)(0.2-0.4) 

=-0.031 

The desired value of AV/V is obtained by multiplying the 
tabulated value by the design lift coefficient as stated in the 
description of the NACA 6-series airfoils. Thus, 

AV 
V = (0.250) (0.4) 

=0.100 

Substituting these values in equation (14) gives the following 
values of S: 
For the upper surface 

S= (1.235+0.100-0.031)2 

=1.700 

For the lower surface 

S= (1.235-0.100+0.031)2 

=1.360 

Example 2: Find the pressure coefficient S at the station 
x=0.25 on the upper and lower surfaces of the NACA 
65(215)-214, a=0.5 airfoil at a lift coefficient of 0.6. 

The airfoil designation shows that this airfoil was obtained 
by combining a thickness form obtained by multiplying' the 
ordinates of the NACA 652-015 form by the factor 14/15 
with the a=0.5 type mean line cambered to a design lift 
coefficient of 0.2. 

The supplementary figures give a value of 1.182 for v/V 
atx=0.25 for the NACA 652-015 basic thickness form. The 
desired value of v/V is obtained by applying formula (5) 
as follows: 

v 14 
V=(1.182-1) 15+1 

=1.170 

From the supplementary figures the following values of 
AVa/V are obtained at x=0.25 for the following basic thickness 
forms: 

By interpolation the value of AVa/V of 0.287 may be 
assigned to the 14-percent-thick form. The desired value of 
AVa/V is then computed as follows by use of equation (15): 

A'v Va=(0.287) (0.6-0.2) 

=0.115 

Data presented in the supplementary figures for the a=0.5 
type mean lines give the value of 0.333 for Av/V at x=0.25. 
As stated in the description of the NACA 6-series airfoils, 
the desired value of AV/V is obtained by multiplying the 
tabulated value by the design lift coefficient. Thus, 

~ = (0,333) (0.2) 

=0.067 

Substituting the foregoing values in equation (14) gives the 
values of S as follows: 

For the upper surface 

S= (1.170+0.067 +0.115)2 

=1.828 

For the lower surface 

S= (1.170-0.067 -0.115)2 

=0.976 

Example 3: Find the pressure coefficient S at the station 
x=0.30 on the upper and lower surfaces of the NACA 2412 
airfoil at a lift coefficient of 0.5. 

The description of airfoils of the NACA four-digit series 
shows that the necessary data may be found from the NACA 
0012 thickness form and 64 mean line in the supplementary 
figures. From these figures the following data are obtained: 

At x=0.30 

At x=0.30 

v 
V=1.162 

A~a=0.239 
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For the NACA 64 mean line at x=0.30 

b.1) 
V=0.260 

For the NACA 64 mean line 

The values of b.v/V llnd eli corresponding to the airfoil 
geometry are obtained by multiplying the foregoing values 
by the factor 2/6 as explained in the description of these 
airfoils; thus, 

~=(0.260)(i) 
=0.087 

elt=(0.76)(~) 
=0.253 

The desired value of b.va/V is obtained from equation (15) 
as follows: 

t:,.~a= (0.239) (0.5-0.253) 

=0.059 

Substituting the proper values in equation (14) gives the 
values of S as follows: 
For the upper surface 

S= (1.162+0.087+0.059)2 

= 1.712 

For the lower surface 

S= (1.162-0.087 -0.059)2 

= 1.032 

Effect of camber on pressure distribution.-At zero lift the 
pressure distributions over the upper and lower surfaces of 
a basic symmetrical thickness distribution are, of course, 
identical. The effect of camber on the pressure distribution 

~ 
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(a) Amount of camber. 

at the design lift coefficient is to separate the pressures on 
the upper and lower surfaces by an amount corresponding 
approximately to the design load distribution of the mean 
line. When the local value of the design load distribution is 
positive, the pressure coefficient S on the upper' surface .is 
increased (decreased absolute pressure) whereas that on the 
lower surface is decreased. This effect is shown in figure 8 (a) 
for various amounts of camber. 

The maximum value of the pressure coefficient on the upper 
surface at the design lift coefficient increases with the design 
lift coefficient and for a given design lift coefficient increases. 
with decreasing values of a. The result is to cause the critical 
Mach number at the design lift coefficient to decrease with 
increasing camber or with the use of types of mean line con
centrating the load near' the leading edge. Figure 8 (b) 
shows that the location of minimum pressure on both surfaces 
is not affected if a type of mean line is used having a value of 
a at least as large as the value of x/e at the position of 
minimum pressure on the basic thickness distribution. If a 
mean line with a smaller value of a is used, the possible extent, 
of laminar flow along the upper surface will be reduced. 

CRITICAL MACH NUMBER 

The critical speed is defined as the free-stream speed at 
which the velocity at any point along the surface of the air
foil reaches the local velocity of sound. If the maximum value
of the low-speed pressure coefficient S is known either experi
mentally or from theoretical methods, the criti~al Mach, 
number may be predicted approximately by the Von Karman. 
method (reference 19). A curve relating the critical Mach. 
number and the low-speed pressure coefficient S has been 
calculated from the equations of reference 19 and included in .. 
the supplementary figures. These predicted critical Mach. 
numbers are useful for preliminary considerations in the· 
absence of test data and appear to correspond fairly well to 
the Mach numbers a t which the local velocity of sound is. 
reached in the high-critical,speed range of lift coefficient~ 
This criterion does not, howe~~r, appear to predict accurately, 
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FIGURE 8.-Effect of amount and type. of cambN' on pressure distribntion at design lift. 
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the Mach numbers at which large changes in airfoil char
acteristics occur, especially when sharp pressure peaks exist 
at the leading edge. A discussion of the characteristics of 
airfoil sections at supercritical Mach numbers is beyond the 
scop'e of this report. 

For convenience, curves of predicted critical Mach num
ber plotted against the low-speed section lift coefficient have 
been included in the supplementary figures for a number of 
airfoils. High-speed lift coefficients may be obtained by 
multiplying the low-speed lift coefficient by the factor 

1 . 
..jl"'::'W· 'I'he critical Mach numbers have been predicted 

from theoretical pressure distributions. For airfoils of the 
NACA four- and five-digit series and for the NACA 7-series 
airfoils, the theoretical pressure distributions were obtained 
by Theodorsen's method. For the other airfoils the theo
retical pressure distributions were obtained by the approxi
mate method described in the preceding section. 

The data in the supplementary figures show that, for any 
one type of airfoil, the maximum critical Mach number 
decreases rapidly as the thickness is increased. The effect 
of camber is to lower the maximum critical Mach number 
and to shift the range of high critical Mach numbers iii the 
same manner as for the low drag range. For common types 
of camber the minimum reduction in critical speed for a 
given design lift coefficient is obtained with a uniform load 
type of mean line. A comparison of the data presented in 
the supplementary figures shows that N ACA 6-series sec
tions have consi<ierably higher maximum critical Mach 
numbers than NACA 24-, 44-, and 230-series airfoils of 
corresponding thickness ratios. 

MOMENT COEFFICIENTS 

Methods of calculation.-Theoretical moment coefficients 
may be approximated directly from the values presented in 
the supplementary figures for the various mean lines. These 
values were obtained from thin-airfoil theory and may be 
scaled up or down linearly with the design lift coefficient or 
with the mean-line ordinates. These theoretical values are 
sufficiently accurate for preliminary considerations, but ex
perimental values should be used for stability and control 
calculations. 

Numerical examples.-The following numerical examples 
illustrate the methods of calculating the moment coefficients: 

Example 1: Find the theoretical moment coefficient about 
the quarter-chord point for the NACA 652-215, a=0.5 
airfoil. 

The designation of the airfoil shows that the design lift 
coefficient of this airfoil is 0.2. From the data on the 
NACA a=0.5 type mean line included inthe supplementary 
figures, the value of C"'c/4 is -0.139 for a design lift coefficient 
of 1.0. The desired value of the moment coefficient. is 
accordingly 

Cmc /4=(-0.139) (0.2) 

=-0.028 

Example 2: Find the theoretical moment coefficient about 
the quarter-chord point for the NACA 4415 airfoil. 

From the description of the N ACA four-digit series 
airfoils, the required data is found to be presented for the 

NACA 64 mean line in the supplementary figures. The 
moment coefficient for this mean line is -0.157. The 
required value is then 

4 
cmc/4 ·( -0.157) "6 

=-0.105 

ANGLE OF ZERO LIFT 

Methods of calculation.-Values of the ideal or design 
angle of attack at corresponding to the design lift coefficient 
Cit are included among the data for the various mean lines 
presented in the supplementary figures. The approximate 
values of the angle of zero lift may be obtained from the 
data by using the theoretical value of the lift-curve slope 
for thin airfoils, 2'lr per radian. The value of alo in degrees 
is then 

(16) 

The tabulated values of aj may be scaled linearly with 
the design lift coefficient or .with the mean-line ordinates. 

Although these theoretical angles of zero lift may be useful 
in preliminary design, they should not be used without 
experimental verification for such purposes as establishing 
the washout of a wing. ./ 

Numerical exampl~s·./: The method of comPlltlng alo is 
illustrated in the following e~amples: / 

Example 1: Find th~ theoretical angle of zero lift of the 
NACA 652-515, a=0.5 airfoil. 

This airfoil number indicates a design lift coefficient of 
0.5. Dll,ta for the NACA a=0.5 mean line indicate that 
ai=3.04° when Clt=1.0. The desired value of aj is then 

a;= (3.04) (0.5) 

=1.52° 

Substituting in equation (16) gives 

alo=1.52 
(57.3) (0.5) 

2'lr 

=-3.0° 

Example 2: Find the theoretical angle of zero lift for the 
NACA 2415 airfoil. 

The description of the N ACA four-digit-series airfoils 
shows that the required values of at and Cl i may be obtained 
by multiplying the corresponding values for the N ACA 64 
mean line (see supplementary figures) by a factor 2/6; then 

a,=(O.74) (~) 
=0.25° 

CI,;~(0.76) (~) 
=0.253 

and from equation (16) 

=-2.0° 

(57.3) (0.253) 
2'lr 
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DESCRIPTION OF FLOW AROUND AIRFOILS 

Perfect-fluid theory postulates that the flow follow the 
airfoil contour smoothly at all angles of attack with no loss 
of energy. Consequently, perfect-fluid theory itself gives 
no information concerning the profile drag or the maximum 
lift of airfoil sections. The explanation of these phenomena 
is found from a consideration of the effects of viscosity, 
which are of primary importance in a thin region near the 
surface of the airfoil called the boundary layer. 

Boundary layers in general are of two types, namely, 
laminar and turbulent. The flow in the laminar layer is 
smooth and free from any eddying motion. The flow in the 
turbulent layer is characterized by the presence of a large 
number of relatively small eddies. Because the eddies in the 
turbulent layer produce a transfer of momentum from the 
relatively fast-moving outer parts of the boundary layer to 
the portions closer to the surface, the distribution of average 
velocity is characterized by relatively higher velocities near 
the surface and a greater total boundary-layer thickness in 

. a turbulent boundary layer than in a laminar' boundary layer 
developed under otherwise identical conditions. Skin fric
tion is therefore higher for turbulent boundary-layer flow 
than for laminar flow. 

When the pressures along the airfoil surface are increasing 
in the direction of flow, a general deceleration takes place. At 
the outer limits of the boundary layer this deceleration takes 
place in accordance with Bernoulli's law. Closer to the sur
face, no such simple law can be given because of the action 
of the viscous forces within the boundary layer. In general, 
however, the relative loss of speed is somewhat greater for 
particles of fluid within the boundary layer than for those at 
the outer limits of the layer because the reduced kinetic 
energy of the boundary-layer air limits its ability to flow 
against the adverse pressure gradient. If the rise in pressure 
is sufficiently great, portions of the fluid within the boundary 
layer may actually have their direction of motion reversed 
and may start moving upstream. When this reverse occurs, 
the flow in the boundary layer is said to be "separated." 
Because of the increased interchange of momentum from 
different parts of the layer, turbulent boundary layers are 
much more resistant to separation than are laminar layers. 
Laminar boundary layers can only exist for a relatively shQrt 
distance in a region in which the pressure increases in the 
direction of flow. Formulas for calculating many of the 
boundary-layereharacteristics are given in references 20 to 22. 

After laminar separation occurs, the flow may either 
leave the surface permanently or reattach itself in the form 
of a turbulent boundary layer. Not much is known concern
ing the factors controlling this phenomenon. Laminar sep
aration on wings is usually not permanent at flight values of 
the Reynolds number except when it occurs near the leading 
edge under conditions corresponding to maximum lift. The 
size of the locally separated region that is formed when the 
laminar boundary layer separates and the flow returns to the 
surface decreases with increasing Reynolds number at a 
given angle of attack. 

The flow over aerodynamically smooth airfoils at low and 
moderate lift coefficients is characterized by laminar boundary 
layers from the leading edge back to approximately the loca
tion of the first minimum-pressure point on both upper and 

lower surfaces. If the region of laminar flow is extensive, 
separation occur", immediately downstream from the location 
of minimum pressure (reference 20) and the flow returns to 
the surface almost immediately at flight Reynolds numbers 
as a turbulent boundary layer. This turbulent boundary 
layer extends to the trailing edge. If the surfaces are not 
sufficiently smooth and fair, if the air stream is turbulent, 
or perhaps if the Reynolds number is sufficiently large, tran.:. 
sition from laminar to turbulent flow may occur anywhere 
upstream of the calculated laminar separation point. 

For low and moderate lift coefficients where inappreciable 
separation occurs, the airfoil profile drag is largely caused by 
skin friction and the value of the drag coefficient depends 
mainly on the relative amounts of laminar and turbulent 
flow. If the location of transition is known or assumed, the 
drag coefficient may be calculated with reasonable accuracy 
from boundary-layer theory by use of the methods of 
references 23 and 24. 

As the lift coefficient of the airfoil is increased by changing 
the angle of attack, the resulting application of the additional 
type of lift distribution moves the minimum-pressure point 
upstream on the upper surface, and the possible extent of 
laminar flow is thus reduced. The resulting greater propor':' 
tion of turbulent flow, together with the larger average veloc
ity of flow over the surfaces, causes the drag to increase with 
lift coefficient. 

In the case of many of the older types of airfoils, this 
forward movement of transition is gradual and the resulting 
variation of drag with lift coefficient occurs smoothly. The 
pressure distributions for NACA 6-series airfoils are such as 
to cause transition to move forward suddenly at the end of 
the low-drag range of lift coefficients. A sharp increase in 
drag coefficient to the value corresponding to a forward loca
tion of transition on the upper surface results. Such sudden 
shifts in transition give the typical drag curve for these air
foils with a "sag" or "bucket" in the low-drag range. The 
same characteristic is shown to a smaller degree by some of 
the earlier airfoils such as t~e NACA 23015 when tested in 
fl, low-turbulence stream. 

At high lift coefficients, a large part of the drag is contrib
uted by pressure or form drag resulting from separation of 
the flow from the surface. The flow over the upper surface is 
characterized by a negative pressure peak near the leading 
edge, which causes laminar separation. The onset of tur
bulence causes the flow to return to the surface as a turbulent 
boundary layer. High Reynolds numbers are favorable to . 
the development of turbulence and aid in this process. If 
the lift coefficient is sufficiently high or if the reestablish
ment of flow following laminar separation is unduly delayed 
by low Reynolds numbers, the turbulent layer will separate 
from the surface near the trailing edge and will cause large 
drag increases. The eventual loss in lift with increasing 
angle of attack may result either from relatively sudden 
permanent separation of the laminar boundary layer near 
the leading edge or from progressive forward movement of 
turbulent separation. Under the latter condition, the flow 
over a relatively large portion of the surface may be separated 
prior to maximum lift. A more extended discussion of the 
flow conditions associated with maximum lift is given in 
reference 5. 
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EXPERIMENTAL CHARACTERISTICS 

SOURCES OF DATA 

The primary source of the wind-tunnel data presented is 
from tests in the Langley two-dimensional low-turbulence 
pressure timnel (TDT). The methods, used to obtain and 
correct the data are summarized in the appendix. Design 
data obtained from tests of 2-foot-chord models in this 
tunnel are presented in the supplementary figures. 

Some wind-tunnel data presented were' obtained in other 
NACA wind tunnels. In each case, the source of the data 
is indicated and the testing techniques and corrections used 
were conventional unless otherwise indicated. 

Most of the flight data consist of drag measurements made 
by the wake-survey method on either the airplane \\ing or it 
"glove" fitted over the wing as the test specimen. When
ever the measurements were obtained for a glove, this fact 
is indicated in the presentation of the data. All data obtained 
at high speeds have been reduced to cofficient form by 
compressible-flow methods. In the case of all such 
NACA flight data, precautions have 'been taken to ensure 
that the results presented are not invalidated by cross 
flows of low-energy air into or out of the survey plane. 

DRAG CHARACTERISTICS OF SMOOTd AIRFOILS 

Drag characteristics in.low~drag range.--The value of the 
drag coefficient in the low-drag range for smooth airfoils is 
mainly a function of the Reynolds number and the relative 
extent of the laminar layer and is moderately affected by the 
airfoil thickness ratio and camber. The effect on minimum 
drag of the position of minimum pressure which determines 
the possible extent of laminar flow is shown in figure 9 for 
some NACA 6-series airfoils. The data show a regular 
decrease in drag coefficient with rearward movement of 
minimum pressure. 
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FiGURE 9.-Variation of minimum drag coefficient with position of minimum pressure for 
some N ACA 6 series airfoils of the Same camber and thickness. R = 6 X 10'. 

The variation of minimum drag coefficient with Reynolds 
number for several airfoils is shown in figure 10. The drag 
coefficient generally decreases with increasing Reynolds num . 
ber up to Reynolds numbers of the order of 20 X 106

• Above 
this Reynolds number the drag coefficient of the NACA 
65(420-420 airfoil remained substantially constant up to a 
Reynolds number of nearly 40X 106• The earlier increase in 
drag coefficient shown by the NACA 66(2x15)-U6 airfoil 
may be caused by surface irregularities because the specimen 
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FIGUllE 10.-Va"iation of minimum section drag coefficient with Reynolds number for several 
airfoils, together with laminar and turbulent skin-friction coefficients for a flat plate. 

tested was a practical-construction model. It may be noted 
that the drag coefficient for the NACA 653-418 airfoil at low 
Reynolds numbers is substantially higher than that of the 
NACA 0012, whereas at high Reynolds numbers the opposite 
is the case. The higher drag of the NACA 653-418 airfoil 
section at low Reynolds numbers is caused by a relatively 
extensive region of laminar separation downstream of the 
point of minimum pressure. This region decreases in size 
with increasing Reynolds number. These data illustrate the 
inadequacy of low Reynolds number test data either to esti
mate the full-scale characteristics or t~ determine the relative 
merits of airfoil sections at flight Reynolds numbers (refer
ences 25 and 26). 

The variation of minimum drag coefficient with camber is 
shown in figure 11 for a number of smooth 18-percent-thick 
NACA 6-series airfoils. These data show very little change 
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FIGURE ll.-'-Variation of minimum section drag coefficient with camber for several NACA 
6·series airfoil sections of I8-percent thickness ratio. R = 9 X I()<l: 
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in nlllllmum drag coefficient with increase in camber. A 
large amount of systematic data is included in figure 12 to 
show the variation of minimum drag coefficient with thick
ness ratio for a number of NACA airfoil sections ranging in 
thickness from 6 percent to 24 percent of the chord. The 
minimum drag coefficient is seen to increase with increase in 
thickness ratio for ea,ch airfoil series. This increase, how
ever, is greater for the NACA four- and five-digit-series air
foils (fig. 12 (a)) than for the N ACA 6-scries airfoils (figs, 
12 (b) to 12 (e)). 
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FIGFRE 12.-Variation of minimum section drag coefficient with airfoil thickness ratio for 
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The data presented in the supplementary figures for the 
NACA 6-series thickness forms show that the range of lift 
coefficients for low drag varies markedly with airfoil thick
ness. It has been possible to design airfoils of 12~percent 
thickness with a total theoretical low-drag range of lift coeffi
cients of 0.2. This theoretical range increases by ~pprox
imately 0.2 for each 3-percent increase of airfoil thickness. 
Figure 13 shows that the theoretical extent of the low-drag 
range is approximately realized at a Reynolds number of 
9 X 106. Figure 13 also shows a characteristic tenclE'ncy for 
the drag to increase to some extent toward the upper end of 
the low-drag range for moderately cambered airfoils, pai'
ticularly for the thicker airfoils. All data for the X ACA 
6-series airfoils show a decrease in the extent of the IO\'l-drag 
range with increasing Reynolds number. Extrapolation of 
the rate of decrease observed at Reynolds numbers below 
9X 106 would indicat(> a vanishingly small low-drag range at 
flight values of the Reynolds number. Tests of a carefully 
constructed model of the XACA 65(421)-420 airfoil showed, 
however, that the rate of reduction of the low-drag range 
with increasing Reynolds number decreased markedly at 
Reynolds numbers above 9X 106 (fig. 14). These data indi
cate that the extent of the low-drag range of this airfoil is 
reduced to about olH'-half the theoretical value at a Reynolds 
number of 35 X 106

• 
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FrGt!RE 13.-Drag characteristics of some XACA 54·series airfoil sections of ,-urious thick
nesses, cambered to a design lift coefficient of 0.4. R = 9 X 10'; TDT tests 682, 733, 735, 
and 691. 

The values of the lift coefficient for which low d.rag is 
obtained are determined largely by the amount of camber. 
The lift coefficient at the center of the low-drag range corre
sponds approximately to the design lift coefficient of the 
mean line. The effect on the drag characteristics of various 
amounts of camber is shown in figure 15. Section data indi
cate that the location of the low-drag range may be shifted 
by even such crude camber changes as those caused by small 
deflections of a plain flap. (See supplementary fig.) 
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The location of the low-drag range shows some variation 
from that predicted by simple thin-airfoil theory; This de
parture appears to be a function of the type of mean line 
used (reference 27) and the airfoil thickness. The effect of 
airfoil thickness is shown in figure 13, from which the center 
'of the low-drag range is seen to shift to higher lift coefficients 
with increasing airfoil thickness. This shift is partly ex
plained by the increase in lift coefficient above the design 
lift coefficient for the mean line obtained when the velocity 
increments caused by the mean lirie are combined with thp 
velocity distribution for the basic thickness form according 
to the approximate methods previously described. 

Drag' characteristics outside low-drag range.-At the end 
of the low~drag range the drag increases rapidly with increase 
in lift coefficient. For symmetrical and low-cambered air
foils, for which the lift coefficient at the upper end of the 
low-drag range is moderate, this high rate of increase does 
not continue. (See fig. 15.) For highly cambered sections; 
for which the lift at the upper end of the low-drag range is 
already high, the drag coefficient shows a continued rapid 
mcrease. 

Comparison of data for airfoils cambered with a uniform
load mean line with data for airfoils cambered to carry the 
load farther forward shows that the uniform-load mean line 
is favorable for obtaining low drag coefficient.s at high lift 
coefficients (fig. 16 'and reference 27). 

Data for many of the airfoils given in the supplementary 
figures s~ow large reductions in drag with increasing Reynolds 
number at high lift coefficients. This scale effect is too large 
to be accounted for by the normal variation in skin friction 
and appears to be associated with the effect of Reynolds 
number on the onset of turbulent flow following laminar 
separation near the leading edge (reference 28). 

Effects of type of section on drag characteristics.-A com
parison of the drag characteristics of the NACA 23012 and of 
three NACA 6-series airfoils is presented in figure 17_ The 
drag for the NACA 6-series sections is substantially lower 
than for the NACA 23012 section in the range of lift coeffi
cients corresponding to high-speed flight, and this margin 
may usually be maintained through the range of lift coeffi
cients useful for cruising by suitable choice of camber. 
The NACA 6-series sections show the higher maximum values 
of the lift-drag ratio. At high values of the lift coefficient, 
however, the earlier NACA sections have generally lower 
drag coefficients than the NACA 6.-series airfoils. 
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Effective aspect ratio.-The combination of high drags at 
high lift coefficients, low drags at moderate lift coefficients, 
and the nonregular variation of drag with lift coefficient 
shown by the NACA 6-series airfoils may lead to para
doxical results when the span-efficiency concept (reference 29) 
is used for the calculation of airplane performance. In the 
usual application of this concept, the airplane drag charac
tc!ristics are approximated by a curve of the type 

(17) 

This curve is usually matched to the actual drag character
istics at a rather low and at a moderately high value of the 
lift coefficient (reference 30). 

The application of this concept to two hypothetical air
planes with N ACA 230-. and (}5~.series sections, respectively, 
is illustrated in figure 18 (a). The wing drags of the air
planes have been calculated by adding the induced drags 
corresponding to an aspect ratio of 10 with elliptical loading 
to the profile-drag coefficients of the NACA 23018 and 
653-418 airfoils. These sections are considered representa
tive of average wing sections for a large airplane of this 
aspect ratio. Ordinate scales are given in figure 18 (a) for 
the wing drag and for the total airplane drag coefficients 
obtained by adding a representative constant value of 
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0.0150 to the wing drag coefficients. The resulting drag 
coefficients have been approximated by two curves corre
sponding to equation (17) and matched to the drag curves 
at lift coefficients of 0.2 and 1.0. These two curves corre
spond to effective aspect ratios of 9.29 for the airplane with 
NAOA 23018 sections and of 8.30 for the airplane with 
NACA 653-418 sections and illustrate the typical large 
reduction in the effective aspect ratio obtained with such 
sections. 

It should be noted, however, that although equation (17) 
provides a reasonably satisfactory approximation to the 
drag of the airplane with NACA 23018 sections, such is not 
the case for the airplane with the NAOA 653-418 section. 
The most important reason for using high aspect ratios on 
large airplane3 is to reduce the drag at cruising lift coefficients 
and to obtain high maximum values of the lift-drag ratio. 
For the two wings considered, the maximum value of this 
ratio is appreciably higher for the airplane with NACA 
653-418 sections (19.8 as compared with 18.5) despite the 
fact that this airplane shows the lower effective aspect ratio. 
Figure 18 (b) shows a similar comparison with similar 
results for two airplanes of aspect ratio 8 and NACA 2415 
and 652-415 airfoils. It is accordingly concluded that the 
effective aspeCt ratio is not a satisfactory criterion for use in 
airfoil selection . 
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EFFECT OF SURFACE IRREGULARITIES ON DRAG 

Permissible roughness.-Previous work has shown large 
drag increments resulting from surface roughness. (reference 
31). Although a large part of these drag increments was 
shown to result from forward movement of transition, sub
stantial drag inGrements resulted from surface roughness in 
the region of turbulent flow. It is accordingly important to 
maintain smooth surfaces even when extensive laminar 
flow cannot be expected, but the gains that may be expected 
from maintaining smooth surfaces are grAater for NACA 6-
or 7 -series airfoils when extensive laminar flows are possible. 

No accurate method of specifying the surface condition 
necessary for extensive laminar flow at high Reynolds num
bers has been developed, although some general conclusions 
have been reached. It may be presumed that for a given 
Reynolds number and chordwise position, the size of the 
permissible roughness will vary directly with the chord of 
the airfoil. It is known, at one extreme, that the surfaces 
do not have to be polished or optically smooth. Such 
polishing or waxing has shown no improvement in tests in 
the Langley two-dimensional low-turbulence tunnels when 
applied to satisfactorily sanded surfaces. Polishing or waxing 
a sllrfacethat is not Iterodynamically smooth wiH, of course, 
result in improvement and such finishes may be of consider
able practical value because deterioration of. the finish may 
be easily Seen and pmlsibly postponed. Large models having 
chord lengths of 5 to 8 feet tested in the Langley two
dImensional low-turbulence tunnels are usually finished by 
sanding in the chordwise direction with N o. 3~0 carborundum 
paper when an aerodynamically smooth surface is desired. 
Experience has shown the resulting finish to be satisfactory 
at flight values of the Reynolds number. Any' rougher 
surface texture should be considered as a possible source of 
transition, although slightly rougher surfaces have appeared 
to produce satisfactory results in some cases. C 

Wind-tunnel experience in testing NACA 6-series sections 
and data of reference 32 show that small protuberances 
extending above the general surface level of an otherwise 
satisfactory surface are more likely to cause transition than 
small depressions. Dust particles, for example, are more 
effective than ,small scratches in producing transition if the 
material at the edges of the scratches is not forced above the 
general surface level. Dust particles adheI:ing to the oil 
left on airfoil surfaces by fingerprints may be expected to 
cause transition at high Reynolds numbers. 

Transition spreads from an individual disturbance with an 
included angle of about 15° (references 31 and 33). A few 
scattered specks, especially near the leading edge,' will cause 
the flow to be largely turbulent. This fact makes necessary 
an extremely thorough inspection if. low drags are to be 
realized. Specks sufficiently large to cause . premature 
transition on full-size wings can be felt by hand. The in
spection procedure used in the Langley two-dimensional 
low-turbulence tunnels is to feel the entire surface by hand 
after which the surface is thoroughly wiped with a dry cloth. 

It has been noticed that transition resulting froin individual 

small sharp protuberances, in contrast to waves, tends to 
occur at the protuberance. Transition caused by surface 
waviness appears to approach t:Qe waVe gradually as the 
Reynolds number or wave size is increased. The height 
of a small cylindrical protuberance necessary to cause transi
tion when located at 5 percent of the chord with its axis 
normal to the surface is shown in figure 19. These data were 

'" "-
""-

i"-
t---

I 2 3 4 5 6 7 8 9 IOxIO' 
Wing Reynolds number, R 

FIGURE 19.-Variation with wing Reynolds number of the minimum height of a cylindrical 
protuberance necessary to cause premature transition. Protuberance has 0.035·inch di
ameter with axis normal to wing surface and is located at 5 percent chord of a 9O·inch·chord 
symmetrical 6-series airfoil section of 15·percent thickness and with minimum pressure at 
70 percent chord. 

obtained at rather low values of the Reynolds number and 
show a large decrease in allowable height with increase in 
Reynolds number. This, effect of Reyn?lds number on 
permissible surface roughness is also evident in figure 20, 
in which a sharp increase in drag at a Reynolds number of 
approximately 20 X 106 occurs for the model painted with 
camouflage lacquer. 

The magnitude of the favorable gradient appears to have a 
small effect on the permissible surface roughness for laminar 
flow. Figure 21 shows that the roughness becomes more 
important at the extremities of the low-drag range where 
the favorable pressure gradient is reduced on one surface. 
The effect of increasing the Reynolds number for a sllrface 
of marginal smoothness, which has an effect similar to in
creasing the surface roughness for a given Reynolds number, 
is to reduce rapidly the extent of the 19w-drag range and 
then to increase the minimum drag coefficient (fig. 21). 
The data of figure 21 were specially chosen to show this 
effect. In most cases, the effect of Reynolds number pre
dominates over the effect of decreasing the magnitude of the 
favorable pressure gradient to such an extent that the only 
effect is the elimination of the low-drag range (reference 34). 

Permissible waviness.-More difficulty is generally en
countered in reducing the waviness to permissible values for 
the maintenance of laminar flow than in obtaining the re
quired surface smoothness. In addition, the specification 
of the required freedom from surface waviness is more 
difficult than that of the required surface smoothness. The 
problem is not limited merely to finding the minimum wave 
size that will cause transition under given conditions because 
the number of waves and the shape of the waves require 
consideration. 
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FIGURE 21.-Drag characteristics of N AOA 65(",)-420 airfoil for two surface conditions. 
TDT tests 300 and 486. 

If the wave is sufficiently large to affect the pressure 
distribution in such a manner that laminar separation is 
encountered, there is little doubt that such a wave will cause 
premature transition at all useful Reynolds numbers. A re
lation between the dimension€; of a wave and' the pressure 
distribution may be found by the method of reference 35. 
The size of the wave required to reverse the favorable pres
sure gradient increases with the pressure gradient. Large 
negative pressure gradients would therefore appear to be 
favorable for wavy surfaces. Experimental results have 
shown this conclusion to be qualitatively correct. 

Little information is available on waves too small to cause 

laminar separation or even reversal of the pressure gradient. 
Data for an airfoil section having a relatively long wave on 
the upper surface are given in figure 22. Marked increases 
in the drag corresponding to a rapid forward movement of 
the transition point were not noticeable below a Reynolds 
number of 44 X 106• On the other hand, transition has been 
caused at comparatively low Reynolds numbers by a series 
of small waves with a wave height of the order of a few ten
thousandths of an inch and a wave length of the order of 
2 inches on the same 60-inch-chord model. 

For the types of wave usually encountered on practical
construction wings, the test of rocking a straightedge over 
the surface in a chord wise direction 'is a fairly satisfactory 
criterion. The straightedge should rock smoothly without 
jarring or clicking. The straightedge test will not show the 
existence of waves that leave the surface convex, such as the 
wave of figure 22 and the series of small waves previously 
mentioned. Tests of a large number of practical-construction 
models, however, ·have shown that those models which 
passed the straightedge test were sufficiently free of small 
waves to permit low drags to be obtained at flight values of 
the Reynolds number. 

It is not feasible to specify construction tolerances on air
foil ordinates with sufficient accuracy to ensure adequate 
freedom from waviness. If care is taken to obtain fair 
surfaces, normal tolerances may be used without causing 
serious alteration of the drag characteristics. 
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FIGl'RE 22.-Expcrimental curve showing variation of drag corffici~nt with Hcynolds number for the N ACA 65(421)-420 airfoil section with a small amount of surface waviness. 

Dra.g with fixed transition.---If the airfoil surface is suffi
ciently rough to cause transition near the leading edge, large 
drag increases are to be expected. Figure 23 shows that, 
although the degree of roughness has some effect, the incre
ment in minimum drag coefficient cau~ed by the smallest 
roughness capable of producing transition is nearly as great 
as that caused by much larger grain roughness when the 
roughness is confined to the leading edge. The degree of 
roughness has a much larger effect on the drag at high lift 
coefficients. If the roughness is sufficiently large to cause 
transition at all Reynolds numbers considered, the drag of 
the airfoil with roughness only at the leading edge decreases 
with increasing Reynolds number (fig. 10 and reference 36). 

The effect of fixing transition by means of a roughness 
strip of carborundum of O.Oll-inch grain is shown in figur(~ 24. 
The minimum drag increases progressively with forward 
movement of the roughness strip. The effE'ct on the drag 
at high lift coefficients is not progressive; the drag increases 
rapidly when the roughness is at the leading edge. Figure 25 
shows that the drag coefficients for the NACA 65(223)-422 
and 63(420)-422 airfoils were nearly the same throughout 
most of the lift range when the extent of laminar flow was 
limited to 0.30c. 

All recent airfoil data obtained in the Langley two-dimen
sional low-turbulence pressure tunnel include results with 
roughened leading edge, and these data are included in the 
supplementary figures. Tests with roughened leading edge 
were formerly made. only for a limited number of airfoil 
sections, especially those having large thickness ratios 
(reference 37). The standard roughness selected for 24-inch
chord models consists of O.Oll-inch carborundum grains 
applied to the airfoil surface at the leading edge over a surface 
length of 0.08c measured from the leading edge on both sur
faces. The grains are thinly spread to cover 5 to 10 percent 
of this area. This standard roughness is considerably more 
severe than that caused by the usual manufacturing irregu
larities or deterioration in service but is considerably less 
severe than that likely to be encountered in service as a 

result of accumulation of ice or mud or damage in military 
combat. 

The variation of minimum drag coefficient with thickness 
ratio for a number of NACA airfoils with standard roughness 
is shown in figure 12. These data show that the magnitudes 
of the minimum drag coefficients for the NACA 6-series 
airfoils are less than the values for the NACA four- and 
five-digit-series airfoils. The rate of increase of drag with 
thickness is greater for the airfoils in the rough condition 
than in the smooth condition. 

Drag with practical construction methods.-The section 
drag coefficients of several airplane wings have been measured 
in flight by the wake-survey method (reference 38), and a 
number of practical-construction wing sections have been 
tested in the Langley two-dimensional low-turbulence 
pressure tunnel at flight values of the Reynolds number. 
Flight data obtained by the NACA (referenee 38) arc sum
marized in figure 26 and some data obtained by the Consoli
dated Vultee Aircraft Corporation are presented in figure 27. 
Data obtained in the Langley two-dimensional low
turbulenee pressure tunnel for typical praetical-construction 
sections are presented in figures 28 to 32. Figure 33 presents 
a comparison of the drag coefficients obtained in this wind 
tunnel for a model of the NACA 0012 section and in flight 
for the same model mounted on an airplane. For this case, 
the wind-tunnel and flight data agree to within the experi
mental error. 

All wings for which flight data art' pres('nted in figure 2() 
were earefully finished to produce smooth surfaces. Great 
care was taken to reduce surface waviness to a minimum 
for all the sections except the NACA 2414.5, the N-22, the 
Republic 8-3,13, and the NACA 27-212. Curvature-gage 
measurements of surface wavinE'ss for some of these airfoils 
are presented in referE'nce 38. Surface eonditions correspond
ing to the data of figure 27 arc descri.bed in the figure. 
These data show that the sections permitting extensive 
laminar flow had substantially lower drag coefficients when 
smooth than the other sections. 
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roughness at 0.30e. R=26XI06• 

The wind-tunnel tests of practical-construction wing sec

tions as delivered by the manufacturer showed minimum 

drag coefficients of the order of 0.0070 to 0.0080 in nearly all 

cases rpgardless of the airfoil section used (figs. 28 to 32). 

Such values may be regarded as typical for good current 

construction practice. Finishing the sections to produce 

smooth surfaces always produced substantial drag reductions 

although considerable waviness usually remained. None of 

the sections tested had fair surfaces at the front spar. Unless 

speeial care is taken to produce fair surfaces at the front spar, 

the resulting wave may be expected to cause transition either 

at the spar location or a short distance behind it. One 

practical-eonstruction specimen tested with smooth surfaces 

maintained relatively low drags up to Reynolds numbers 

of approximately 30X106 (NACA 66(2x15)-116 airfoil of 

fig. 10)~ This specimen had no spar forward of about 35 

percent chord from the leading edge and no spanwise stiffeners 

forward of the spars. This type of construction resulted in 

unusually fair surfaces and is being used on some modern 

high-performanee airplanes. 
A comparison of the effect of airfoil section on the mini

mum drag with practical-construetion surfaces is very diffi

eult because the quality of the surface has more effect on 

the drag than the type of section. Probably the best com

parison can be obtained from pairs of models construeted at 
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FIGURE 27.-Consolidated·Vultee flight measurements of the effect of wing surface condition 

on drag of an NACA 66(215)-1(14.5) wing section. 

the same time by the same manufacturers. Data for such 

pairs of models are presented in figures 30 to 32. The results 

indicate that as long as current construction practices are 

used the type of section has relatively little effect at flight 

values of the Reynolds number for military airplanes. . 
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FIGURE 34.-Effect of de-ieers on the drag of two practical-construction airfoil sections with relatively smooth surfaces. 

Important savings in drag may be obtained at high 
Reynolds numbers by keeping the surfaces smooth even if 
extensive laminar flow is not realized. Drag increments resul t-

o ing from surface roughness in turbulent flow have been shown 
to be important (reference 31). The effects of surface roughness 
on the variation of drag with Reynolds number are shown 
in figure 29, in which the favorable scale effect usually expected 
at high Reynolds numbers was not realized_ This type of 
scale effect may be compared with that shown for the NACA 
63(420)-422 airfoil with rough leading edge but otherwise 
smooth surfaces (fig. 10). Drag increments obtained in 
flight resulting from roughness in the turbulent boundary 
layer with fixed transition are presented in reference 39, 

The effect of the application of de-icers to the leading edge 
of two smooth airfoils is shown in figure 34. The de-icer 
"boots" were installed in both cases by the manufacturer to 
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FIGURE 35.-The effect of propel«lr operation on section drag coefficient of a fighter-type air
plane from tests of a model in the Langley 19-foot pressure tunnel. CL=O.lO; R=3.7Xl06. 

represent good typical installations. The mmlmum drag 
coefficients for both sections with de-icers installed were of 
the order of 0.0070 at high Reynolds numbers. 

Effects of propeller slipstream and airplane vibration.
Very few data are available on the effect of propeller slip
stream on transition or airfoil drag; the data that are avail
able do not show consistent results. This inconsistency may 
result from variations in lift coefficient, surface condition, 
air-stream turbulence, propeller advance-diameter ratio, and 
number of blades. Tests in the Langley 8-foot high-speed 
tunnel indicated transition occurring from 5 to 10 percent of 
the chord from the leading edge (reference 40). Drag measure
ments made in the Langley 19-foot pressure tunnel (fig. 35) 
indicated only moderate drag increments resulting from a 
windmilling propeller. Although the data of figure 35 may 
not be very accurate because of the difficulty of making 
wake surveys in the slipstream l these data seem to preclude 
very large drag increments such as would result from move· 
ment of the transition to a position close to the leading edge. 
These data also seem to be confirmed by recent NACA flight 
data (fig. 36), which show transition as far back as 20 percent 
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of the chord in the slipstream. Other unpublished NACA 
flight data on transition on an 8-3,14.6 airfoil in the slip
stream indicated that laminar flow occurred as far back 
as 0.2c. 

Even less data are available on the effects of vibration on 
transition. Tests in the Langley 8-foot high-speed tunnel 
(reference 40) showed negligible effects, but the range of 
frequencies tested may not have been sufficiently wide. Some 
unpublished flight data showed small but consistent rear
ward movements of transition outside the slipstream when 
the propellers were feathered. This effect was noticed even 
when the propeller on the opposite side of the airplane from 
the survey plane was feathered and was accordingly attrib
uted to vibration. Recent tests in the Ames full-scale tun
nel showed premature adverse scale effect on drag coefficients 
measured by the wake-survey method when a model-support 
strut vibrated. 

LIFT CHARACTERiSTICS OF SMOOTH AIRFOILS 

Two-dimensional data.-As explained in the section "Angle 
of Zero Lift," the angle of zero lift of an airfoil is largely 
determined by the camber. Thin-airfoil theory provides a 
means for computing the angle of zero lift from the mean-line 
data presented in the supplementary figures. The agree
ment between the calculated and the experimental angle of 
zero lift depends on the type of mean line used. Comparison 
of the experimental values of the angle of zero lift obtained 
from the supplementary figures and the theoretical values 
taken from the mean-line data shows that the agreement is 
good except for the uniform-load type (a=1.0) mean line. 
The angles of zero lift for this type mean line generally have 
values more positive than those predicted. The experi~ 
mental va,lues of the angles of zero lift for a number of NACA 
four- and five-digit and NACA 6-serie::; airfoils are presented 
in figure 37. The. airfoil thickness appears to have little effect 
on the value of the angle of zero lift regardless of the airfoil 
series. For the NACA four-digit-series airfoils, the angles of 
zero lift are approximately 0.93 of the value given by thin
airfoil theory; for the NACA 230-series airfoils, this factor is 
approximately 1.08; and for the NAOA 6-series airfoils with 
uniform-load type mean line, this factor is approximately 
0.74. 

The lift-curve slopes (fig. 38) for airfoils tested in the 
'Langley two-dimensional low-turbulence pressure tunnel are 
higher than those previously obtained in the tests reported 
in reference 8. It is not clear whether this difference in slope 
is caused by the difference in air-stream turbulence or by 
the differences in test .methods, since the section data of 
reference 8 were inferred from tests of models of aspect ratio 6. 
The present values of the lift-curve slope were measured for 
a Reynolds number of 6 X 106 and at values of the lift coeffi
cient approximately equal to the design lift coefficient of the 

airfoil section. For the NACA 6-series airfoils this lift coeffi
cient is approximately in the center of the low-drag range. 
For airfoils having thicknesses in the range from 6 to 10 per
cent, the NAOA four- and five-digit series and the NAOA 

. 64-series airfoil sections have values of lift-curve slope very 
close to the value for thin airfoils (271' per radian or 0.110 per 
degree). Variation in Reynolds number between 3XI06 and 
9X 106 and variations in airfoil camber up to 4 percent chord 
appear to have no systematic effect on values of lift-curve 
slope. The airfoil thickness and the type of thickness 
distribution appear to be the primary variables. For the 
NAOA four- and five-digit-series airfoil sections, the lift
curve 'slope decreases with increase in airfoil thickness. 
For the NAOA {i-series airfoil sections, however, the lift
curve slope increases with increase in thickness and forward 
movement of the position of minimum pressure of the basic 
thickness form at zero lift. 

Some N AOA 6-series airfoils show jogs in the lift curve 
at the end of the low-drag range, especially at low Reynolds 
numbers. This jog becomes more pronounced with increase 
of camber or thickness and with rearward movement of the 
position of minimum pressure. on the basic thickness form. 
This jog decreases rapidly in severity with increasing Rey
nolds number, becomes merely a change in lift-curve slope, 
and is practically nonexistent at a Reynolds number of 

, 9 X 106 for most airfoils that would be considered for practical 
application. This jog may be a consideration in the selection 
of airfoils for small low-speed airplanes. An analysis of 
the flow conditions leading to this jog is presented in refer
ence 28. 

The variation of maximum lift coefficient with airfoil 
thickness ratio at a Reynolds number of 6 Xl 06 is shown in 
figure 39 for a number of N AOA airfoil sections. The airfoils 
for which data are presented in this figure have a range of 
thickness ratio from 6 to 24 percent and cambers up to 
4 percent chord. From the data for the NAOA four- and 
five-digit-series airfoil sections (fig. 39 (a»), the maximum 
lift coefficients for the plain airfoils appear to be the greatest 
for a thickness of 12 percent. In general, the rate of change 
'of maximum lift coefficient with thickness ratio appears 
to be greatest for· airfoils having a thickness less than 12 
percent. The data for the NAOA 6-series airfoils (figs. 
39 (b) to 39 (e» also show a rapid increase in maximum lift 
coefficient with increasing thickness ratio for thickness 
ratios of less than 12 percent. For NAOA 6-series airfoil 
sections cambered to give a design lift coefficient of not more 
than 0.2, the optimum thickness ratio for maximum lift 
coefficient appears to be between 12 and 15 percent, except 
for the airfoils having the position of minimum pressure at 
60 percent chord. The optimum thickness ratio for the 
NAOA 56-series sections cambered for a design lift coeffi
cient of not more than 0.2 appears to be 15 percent or greater. 
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The available data indicate that a thickness ratio of 12 
percent or less is optimum for airfoils having a design lift 
coefficient of 0.4. 

The maximum lift coefficient is least sensitive to variations 
in position of minimum pressure on the basic thickness form 
for airfoils having thickness ratios of 6, 18, or 21 percent. 
The maximum lift coefficients corresponding to intermediate 
thickness ratios increase with forward movement of the 
position of minimum pressure, particularly for those airfoils 
having design lift 'coefficients of 0.2 or less. 

The maximum lift coefficients of moderately cambered 

~NACA 6-series sections increase with increasing camber 
(fig. 39 (b) to 39 (e». The addition of camber to the sym
metrical airfoils causes the greatest increments of maximum 
lift coefficient for airfoil thickness ratios varying from 6 to 
12 percent. The effectiveness of camber as a means of 
increasing the maximum lift coefficient generally decreases 
as the airfoil thickness increases beyond 12 or 15 percent. 
The available data indicate that the combination of a 12-
percent-thick section and a mean line cambered for a design 
lift coefficient of 0.4 yields the highest maximum lift 
coefficient. 
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The variation of maximum lift with type of mean line is 
shown in figure 40 for one 6-series thickness distribution. 
No systematic data are available for mean lines with values 
of a less than 0.5. It should be noted,however, that airfoils 
such as the N ACA 230-series sections with the maximum 
camber far forward show large values of maximum lift. 
Airfoil sections with maximum camber far forward and with 
thickness ratios of 6 to 12 percent usually stall from the 
leading edge with large sudden losses in lift. A more de
sirable gradual stall is obtained when the location of maxi
mum camber is farther back, as for the NACA 24-,44-, and 
6-series sections with normal types of camber. 

2.0 

y--r- ~ 

I,.---f-

Reynolds number 
o 6.0x10 6 

o 9.0 

o .2 .4 .6 .8 1.0 
Type of camber, a 

FIGURE 40.-Variation of maximum lift coefficient with type of camber for some NACA 
65a-418 airfoil sections from tests in the Langley two-dimensional low-turbulence pressure 
tunnel. 

A comparison of the maximum lift coefficients of NACA 
64-series airfoil sections cambered for a design lift coefficient 
of 0.4 with those of the NACA 44- and 230-series sections 
(fig. 39) shows that the maximum lift coefficients of the 
NACA 64-series airfoils are as high or higher than those of 
the NACA 44-series sections in all cases. The NACA 230-
series airfoil sections have maximum lift coefficients some
what higher than those of the NACA 64-series sections. 

The scale effect on the maximum lift coefficient of a large 
number of NACA airfoil sections for Reynolds numbers 
from 3 X 106 to 9 X 106 is shown in figure 41. The scale 
effect for the NACA 24-, 44-, and 230~series airfoils (figs. 
41 (a) and 41 (b» having thickness ratios from 12 t024 percent 
is favorable and nearly independent of the airfoil thickness. 
IIwreasing the Reynolds number from 3 X 106 to 9 X 106 

results in an increase in the maximum lift cO('fficient of 

approximately 0.15 to 0.20. The scale effect on the NACA 
00- and 14-series airfoils having thickness ratios less than 
0.12c is very small. 

The scale-effect data for the NACA 6-series airfoils (figs. 
41 (c) tv 41 (f» do not show an entirely systematic variation. 
In general, the scale effect is favorable for these airfoil 
sections. For the NACA 63- and 64-series airfoils with 
small camber, the increase iIi maximum lift coefficient with 
increase in Reynolds number is generally small for thicknes.s 
ratios of less than ·12 percent but is somewhat larger for the 
thicker sections. The character of the scale effect for the 
NACA 65- and 66-series airfoil sections is similar to that for 
the NACA 63- and 64-series airfoils but the trends are not 
so well defined. In most cases the scale effect· for NACA 
6-series airfoil sections cambered for a design lift coefficient 
of 0.4 or 0.6 does not vary much with airfoil thickness ratio. 
The data of figure 42 show that, the maximum lift coefficient 
for the NACA 63(420)-422 airfoil continues to increase with 
Reynolds number, at least up to a Reynolds number of 
26X106

• 

The values of the maximum lift coefficient presented were 
obtained for steady conditions. The maximum lift coeffi
cient may be higher when the angle of attack is increasing. 
Such a condition might occur during gusts and landing 
maneuvers. (See reference 41.) 

The systematic investigation of NACA 6-series airfoils 
included tests of the airfoils with a simulated split flap de
flected 60°. It. was believed that these tests would serve as 
an indication of the effectiveness of more powerful types of 
trailing-edge high-lift devices although sufficient data to verify 
this assumption have not been obtained. The maximum lift 
coefficients for a large number of NACA airfoil sections 
obtained from tests with the simulated split flap are presented 
in figure 39. 

The data for the NACA 00- and 14-series airfoils equipped 
with split flap for thickness ratios from 6 to 12 percent show 
a considerable increase in maximum lift coefficient with in
crease in thickness ratio. Corresponding data for the NACA 
44-series airfoils wit,h thickness ratios from 12 to 24 percent 
show very little variation in maximum lift coefficient with 
thickness. For NACA 6-sel'ies airfoils equipped with split 
flaps the maximum lift coefficients increase rapidly with 
increasing thickness Over a range of thickness ratio, the range 
beginning at thickness ratios between 6 and 9 percent, depend
ing upon the camber. The upper limit of this range for the 
symmetrical NACA 64- and 65-series airfoils appears to be 
greater than 21 percent and for the NACA 63- and 66-series 
airfoils, approximately 18 percent. Between thickness ratios 
of 6 and 9 percent the values of maximum lift coefficient for 
the symmetrical N ACA 6-series airfoils are essentially the 
same regardless of thickness ratio and position of minimum 
pressure on the basic thickness form. The maximum lift 
coefficient decreases with rearward movement of minimum 
pressure for the airfoils having t,hickness ratios between 9 and 
18 percent. 
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Substantial increments in maximum lift coefficient with 
increase in camber are shown for the N ACA 6-series airfoils 
of moderate thickness ratios (10 to 15 percent chord) with 
split flaps. For the airfoils having thickness ratios of 6 
percent and for the airfoils having thickness ratios of 18 or 21 
percent, the maximum lift coefficient is affected very little by 
a change in camber. For thickness ratios greater than 15 
percent, the maximum lift coefficients of the N ACA 63- and 
64-series airfoils cambered for a design lift coefficient of 0.4 
equipped with split flaps are greater than the corresponding 
maximum lift coefficients of the NACA 44-series airfoils. 

Three-dimensional data.-No recent systematic three
dimensional wing data obtained at high Reynolds numbers 
are available, so that it is difficult to make any comparison 
with the section data. When the maximum-lift data for 
three-dimensional wings are compared with section data, 
account should be taken of the span load distribution over 
the wing. The predicted maximum lift coefficient for the 
wing will be somewhat lower than the maximum lift coeffi
cients of the sections used because of the nonuniformity of 
the spanwise distribution of lift coefficient. The difference 
amounts to about 4 to 7 percent for a rectangular wing with 
an aspect ratio of 6. 

Maximum-lift data obtained from tests of a number of 
wings and airplane models in the Langley 19-foot pressure 
tunnel are presented in table II. Although section data at 
the Reynolds numbers necessary to permit a detailed com
parisonare not available, the maximum lift coefficient for 
plain wings given in table II appears to be in general agree
ment with values expected from section data. The data for 
the airplane'models are presented to indicate the maximum 
lift coefficients obtained with varIOUS airfoils and 
eonfigurations. 

LIFT CHARACTERISTICS OF ROUGH AIRFOILS 

Two-dimensional data.-Most recent airfoil tests, espe
cially of airfoils with the thicker sections, have included tests 
with roughened leading edge (reference 37), and the available 
data are included in the supplementary figures. 

The effect on maximum lift coefficient of various degrees 
of roughness applied to the leading edge of the NACA 
63(420)-422 airfoil is shown in figure 23. The maximum lift 
coefficient decreases progressively with increasing roughness 
(reference 36). For a given surface condition at the leading 
edge, the maximum lift coefficient increases slowly with 
increasing Reynolds number (fig. 43). Figure 24 shows that 
roughness strips located more than 0.20e from the leading 
edge have littie effect on the maximum lift coefficient or 
lift-curve slope. The results presented in figure 38 show 
that the effect of standard leading edge roughness is to de
crease the mt-curve slope, particularly for the thicker air
foils having the position of minimum pressure far back. 
These data are for a Reynolds number of 6X 106• Maximum-

20 

I--~ I---...... l--.--

, 

I .-
o 0.002 roughness 
o .004 roughness 
o .01/ roughness 
LI Smooth 

o 4 8 Ie 16 cO e4x/O' 
Reynolds number, R 

FIGURE 43.-Effects of Reynolds number on maximum section lift coefficient CI max of the 
N ACA 63(420)-422 airfoil with roughened and smooth leading edge. 

lift-coefficient data at a Reynolds number of 6 X 106 for a 
large number of NACA airfoil sections with standard rough
ness are presented in figures 39 and 41. The variation of 
maxi~um lift coefficient with thickness for the NACA four·· 
and five-digit-series airfoil sections shows the same trends 
for the airfoils with roughness as for the smooth airfoils 
except that the values are considerably reduced for all of 
these airfoils other than the N ACA OO-series airfoils of 
6 percent thickness. For a given thickness ratio greater than 
15 percent, the values of maximum lift coefficient for the 
four- and five-digit-series airfoils are substantially the same. 

Much less variation in maximum lift coefficient with thick
ness ratio is shown by the NACA 6-series airfoil sections in 
the rough condition than with smooth leading edge. The 
maximum lift coefficients of the 6-percent-thick airfoils are 
essentially the same for both smooth and rough conditions. 
The variation of maximum lift coefficient with camber, how
ever, is about the same for the airfoils with standard rough
ness as for the smooth sections. The maximum lift coeffi
cient of airfoils with standard roughness generally decreases 
somewhat with rearward movement of the position of mini
mum pressure except for airfoils having thickness ratios 
greater than 18 percent, in which case some slight gain in 
maximum lift coefficient results from 3, rearward movement 
of the position of minimum pressure. 

Except for the NACA 44-series airfoils of 12 to 1.'5 percent 
thickness, the present data indicate that the rough NACA 
64-series airfoil sections cambered for a design lift coefficient 
of 0.4 have maximum lift coefficients consistently higher than 
the rough airfoils of the NACA 24-, 44-, and 230-series air
foils of comparable thickness. Standard roughness causes 
decrements in maximum lift coefficient of the airfoils with 
split flaps that are substantially the same as those observed 
for the plain airfoi.ls. 
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The maximum lift coefficient may be lowered by failure to 
maintain the true airfoil contour near the leading edge, but 
no systematic data on this ·effect have been obtained. Ex
amples of this effect that were accidentally encountered are 
presented in figure 44, in which lift characteristics are given 
for accurate and slightly inaccurate models. The model 
inaccuracies were so small that they were not found previous 
to the tests. 

Three-dimensional data.-Tests of several airplanes in the 
Langley full-scale tunnel (reference 42) show that many fac
tors besides the airfoil sections affect the maximum lift co
efficient of airplanes. Such factors as roughness, leakage, 
leading-edge air intakes, armament installations, nacelles, 
and fuselages make it difficult to correlate the airplane maxi
mum lift with the airfoils used, even when the flaps are 
retracted. The various flap configurations used make such 
a correlation even more difficult when the flaps are deflected. 
When the flaps were retracted, both the highest and the 
lowest maximum lift coefficients obtained in recent tests of 
airplanes and complete mock-ups of conventional configura
tions in the Langley full-scale tunnel were those obtained 
with NACA 6-series airfoils. 

j 
[; Model (Longley 19-foot pressure tunnel) -

Airplane I I I I I I I 
o Sealed condition } (Langle fi II-scale jf o Service conddlon Lj t::nnel) 

1I 
o 4 8 12 115 20 24 

Angle of atfack, a, deg 

FIGURE 45.-The effects of surface conditions on the lilt characteristics of a fighter-type 
'airplane. R=2.8X106• 

Results obtained from tests of a model of an airplane in 
the Langley 19-foot pressure tunnel and of the airplane in 
the Langley full-scale tunnel are presented in figure 45. 
Both tests were made at approximately the same Reynolds 
number. The results show that the airplane in the service 
condition had a maximum lift coefficient more than 0.2 
lower than that of the model, as wljll as a lower lift-curve 
slope. Some improvement in the airplane lift characteristics 
was obtained by sealing leaks. These results show that air
plane lift characteristics are strongly affected by details not 
reproduced on large-scale smooth models. 
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Lift characteristics obtained in the IJangley 19-foot pres
sure tunnel for two airplane models in the smooth condition 
and with transition fixed at the front spar are presented in 
figures 46 and 47. In both cases, the Ilft-curve slope was de
creased throughout most of the lift range with fixed transi
tion. The maximum lift coefficient was decreased in one 
case but was increased in the other case. 

UNCONSERVATIVE AIRFOILS 

The attempt to obtain low drags, especially for long-range 
airplanes, leads to high wing loadings together with relatively 
low span loadings. This tendency results in wings of high 
aspect ratio that require large spar depths for structural 
efficiency. The largp- spar depths require the use of thick 
root sections. 

This trend to thick root sections has been encouraged by 
the relatively small increase in drag coefficient with thickness 
ratio of smooth airfoils (fig. 12). Unfortunately, airplane 
wings are not usually constructed with smooth surfaces and, 
in any case, the surfaces cannot be relied upon to stay smooth 
under all service conditions. The effect of roughening the 
leading edges of thick airfoils is to cause large increases in the 
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FIGURE 47,-The effect on the lift characteristics of fixing the transition on a model in the 
Langley 19-foot pressure tunnel. R=2.7XlO.6. (Model with N ACA airfoil sections.) 

drag coefficient at high lift coefficients. The resulting drag 
coefficients may be excessive at cruising lift coefficients for 
heavily loaded, high-altitude airplanes. Airfoil sections that 
have suitable characteristics when smooth but have excessive 
drag coefficients when rough at lift coefficients corre
sponding to cruising or climbing conditions are classified as 
unconservative. 

The decision as to whether a given airfoil section is conserv
ative will depend upon the power and the wing loading of 
the airplane. The decision may be affected by expected 
service and operating conditions. For example, the ability 
of a multiengine airplane to fly with one or more engines in
operative in icing conditions or after suffering damage in 
combat may be a consideration. 

. As an aid in judging whether the sections are conservative, 
the lift coefficient corresponding to a drag coefficient of 0.02 
was determined from the supplementary figures for a large 
number of NACA airfoil sections with roughened leading 
edges. The variation of this critical lift coefficient with air
foil thickness ratio and camber is shown in figure 48. These 
data show that, in general, the lift coefficient at which the 

. drag coefficient is 0.02 decreases with rearward movement of 
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position o~ minimum pressure. The thickness ratio for 
which this lift coefficient is a maximum usually lies between 
12 and 15 percent; variations in thickness ratio from this 
optimum range generally cause rather sharp decreases in the 
critical lift coe'lficient. The addition of camber to the 
symmetrical airfoils usually causes an increase in the critical 
lift coefficient except for the very thick sections, in which case 
increasing the camber becomes relatively ineffectual and may 
be actually harmful. All the data of figure 48 correspond to 
a Reynolds number of 6XI06

• As shown in figure 49, the 
drag coefficient at flight values of the Reynolds number may 
be considerably lower than the drag coefficient at a Reynolds 
num bel' of 6 X 106 if the roughness is confined to the leading 
edge. 

PITCHING MOMENT 

The variation of the quarter-chord pitching-moment coef
ficient at zero angle of attack with airfoil thickness ratio and 
camber is presented in figure 50 for several NACA airfoil 
sec.tions. The quarter-chord pitching-moment coefficients of 
the NACA four- and five-digit-series airfoils become less 
negative with increasing airfoil thickness. Almost no varia
tion in quarter-chord pitching-moment coefficient with air
foil thickness ratio or position of minimum pressure is shown 
by the NACA 6-series aiffoil sections. As might be expected, 
increasing the amount of camber causes an almost uniform 
negative increase in the pitching-moment coefficient. 

As discussed previously, the pitching moment of an airfoil 
section is primarily a function of its camber, and thin-airfoil 
theory provides a means for estimating the pitching moment 
from the mean-line data presented in the supplementary 
figures. A comparison of the experimental moment coeffi
cient and theoretical values for the mean lines is presented 
in figure 51. The experimental values of the moment coeffi
cients for NACA 6-series airfoils cambered with the uniform
load type mean line are usually about three-quarters of the 
theoretical values (figs. 50 and 51). Airfoils employing mean 
lines with values of a less than unity, however, have moment 
coefficients somewhat more negative than those indicated by 
theory. The use of a mean line having a value of a less than 
unity, therefore, brings about only a slight reduction in 
pitching-moment coefficient for a given design lift coefficient 
when compared with the value obtained with a uniform
load type mean line. The experimental moment coefficients 
for the NACA 24-, 44-, and 230-series airfoils are also less 
negative than those indicated by theory but the agreement 
is closer than for airfoils having the uniform-load type mean 
line. 

The pitching-moment data for the airfoils equipped with 
simulated split flaps deflected 60° (fig. 50) indicate that the 
value of the quarter-chord pitching·moment coefficient be
comes more negative with increasing thickness for all the 
airfoils tested. For the thicker NACA 6-series sections the 
magnitude of the moment coefficient increases with rearward 
movement of the position of minimum pressure. 
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POSITION OF AERODYNAMIC CENTER 

The variation of chordwise position of the aerodynamic 
center corresponding to a Reynolds number of 6 X 106 for a 
large number of NACA airfoils is presented in figure 52. 
From the data given in the supplementary figures there 
appears to be no systematic variation of chordwise position 
of aerodynamic center with Reynolds number. The data 
for the NACA 00- and 14-series airfoils, presented for thick
ness ratios less than 12 percent, show that the chordwise 
position of the aerodynamic center is at the quarter-chord 
point and does not vary with airfoil thickness. For the 
NACA 24-, 44-, and 230-series airfoils with thickness ratios 
ranging from 12 to 24 percent, the chord wise position of the 
aerodynamic center is ahead of the quarter-chord point and 
moves forward with increase in thickness ratio. 

The chordwise position of the aerodynamic center is behind 
the quarter-chord point for the NACA 6-series airfoils and 
moves rearward with increase in airfoil thickness, which is 
in accordance with the trends indicated by perfect-fluid 
theory. There appears to be no systematic variation of 
chordwise position of the aerodynamic center with camber or 
position of minimum pressure on the basic thickness form for 
these airfoils. 

The data of reference 43 show important forward move
ments of the aerodynamic center with increasing trailing-edge 
angle for a given airfoil thickness. For the NACA 24-, 44-, 
and 230-series airfoils (fig. 52) the effect of increasing 
trailing-edge angle is apparently greater than the effect of 

increasing thickness. For the N ACA 6-series airfoils, the 
opposite appears to be the case. 

HIGH-LIFT DEVICES 

Lift characteristics for two NACA 6-series airfoils equipped 
with plain flaps are presented in figure 53. These data 
show that the maximum lift coefficient increases less rapidly 
with flap deflection for the more highly cambered section. 
Lift characteristics of three NACA 6-series airfoils with split 
flaps are presented in reference 44 and figure 54. The maxi
mum-lift increments for the 12-percent-thick sections were 
only about three-fourths of that increment for the 16-percent
thick section. The maximum lift coefficient for the thicker 
section with flap deflected is about the same as that obtained 
for the NACA 23012 airfoil in the now obsolete Langley 
variable-density tunnel (reference 45) and in the Langley 
7- by lO-foot tunnel (reference 46). 

Tests of a number of slotted flaps on N ACA 6-series 
airfoils (supplementary figures and reference 47) indicate that 
the design parameters necessary to obtain high maximum 
lifts are essentially similar to those for the the N ACA 230-
series sections (references 48 and 49). Lift data obtained 
for typical hinged single slotted 0.25c flaps (fig. 55 (a» on 
the NACA 63,4-420 airfoil are presented in figure 55 (b). 
A maximum lift coefficient of approximately 2.95 was ob
tained for one of the flaps. Lift characteristics for the 
NACA 653-118 airfoil fitted with a double slotted flap 
(reference 47 and fig. 56 (a» are presented in figure 56 (b). 
A maximum lift coefficient of 3.28 was obtained. It may 
be concluded that no special difficulties exist in obtaining 
high maximum lift coefficients with slotted flaps on moderately 
thick N ACA 6-series sections. 

Tests of airplanes in the Langley full-scale tunnel (reference 
42) have shown that expected increments of maximum lift 
coefficient are obtained for split flaps (fig. 57) but not for 
slotted flaps (fig. 58). This failure to obtain the expected 
maximum-lift increments with slotted flaps may be attributed 
to inaccuracies of flap contour and location, roughness near 
the flap leading edge, leakage, interference from flap sup
ports, and deflection of flap and lip under load. 

LATERAL-CONTROL DEVICES 

An adequate discussion of lateral-control devices is outside 
the scope of this report. The following brief discussion is 
therefore limited to considerations of effects of airfoil shape 
on aileron characteristics. 

The effect of airfoil shape on aileron effectiveness may be 
inferred from the data of figure 59 and reference 50. The 
section aileron effectiveness parameter Aaol Ao is plotted 
against the aileron-chord ratio Calc for a number of airfoils 
of different type in figure 59. Also shown in this figure 
are the theoretical values of the parameter for thin airfoils. 
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The data show no large consistent trends of aileron-effective
ness variation with airfoil section for a wide range of thick
ness distributions and thickness ratios. In order to evaluate 
aileron characteristics from section data, a method of analysis 
is necessary that will lead to results comparable to the usual 
curves of stick force against helix angle pb/2V for three
dimensional data. The analysis that follows is considered 
suitable for comparing the relative merits of ailerons from 
two-dimensional data. 

Two-dimensional data are presented in the form of the 
eq uivalent change in section angle of attack Aao required to 
maintain a constant section lift coefficient for various de
flections of the aileron from neutral. This equivalent change 
in angle of attack is plotted against the hinge-moment param
eter ACHO, which is the product of the aileron deflection 
from neutral and the resulting increment of hinge-moment 

.~ 
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o 20 40 60 80 100 
Flop deflection, Of; deg 

FWURE 54.-Maximum lift coefficients for some NACA airfoils fitted with O.20-airfoil·chord 
split flaps. 

coefficient based on the wing chord. This method of analysis 
takes into account the aileron effectiveness, the hinge 
moments, and the possible mechanical advantage between 
the controls and the ailerons. The larger the value of Aao 

for a given value of the hinge-moment parameter, the more 
ad vantageous the combination should be for providing a 
large value of pb/2V for a given control force. The assump
tion that the aileron operates at a constant lift coefficient 
as the airplane rolls is not entirely correct, however, and 
involves an overestimation of the effect of changing angle 
of attack on the hinge-moment coefficient. In addition, 
the span of the ailerons and other possible three-dimensional 
effects are not considered. In spite of these inaccuracies, 
the method provides a useful means of comparing the two
dimensional characteristics of different ailerons. 
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SUPPLEMENTARY INFORMATION REGARDING TESTS OF TWO-DIMENSIONAL MODELS 

I Air-flow characteristics 
Symbol Basic airfoil Type of flap ---------------- Reference 

TIM I R 

------;--- NACA OO~~~=~~~~=~~~~~~~~~~= --;,lain __ ~==~~=~~~~~~~ ----~;_- --~~-- -=~~~~~-r~~~;-
+ 
X 

o 
<> 
A 
\1 

C> 
<l 
!7 

'q 

c,.. 

.d 

o 
o 
[} 

Q 

o 
o 
o 
l:> 

NACA 0015 _________________________________________________ do ______________________________ _ 

NACA 23012, __________ . ____ . ___ . ______ . ____ ..• ___ .. __ . ___ .. do ___ ... ___ ... _._, .. _ .. ____ .. __ .. 

NACA 66(2xI5)-OlU _ Plain, straight contour ___ ... ____ ... _ 

NACA 66-009._ ... ____ ... ___ "' __________ .. _____ .. ___ "'_ Plain __ ..• _._ .... _ .... _____ .... __ ..• _ 

NACA 63,4-4(17.8) (approx.) ______ . _______ . __ ._ . _____ . Internally balanced __ .... ___ ._. __ ._. 

NACA 66(2xI5)-216, a=0.6. _________ . _____ .. ___ ... ___ .. _ .. ,.do .... __ ..... ___ .... ___ .. ______ ._ 

NACA 66(2xI5)-116, a=O.6 .. __________ . ____ '. __________ .. ___ do _______________________________ _ 

NACA 64,2-(1.4) (13.5) _____ .. ___________ . ____ . __ ______ _ Plain_. ______ • ____ .. ______ . _____ .. __ ._ 

NACA 65,2-318 (approx.) ________ ._ .... ________ ... __ .. _ Internally balanced ____________ .. __ _ 

NACA 63(420)-521 (approx.) __ .. ______ .. _______________ .. __ do .. ___ .... _______________ . _____ _ 

NACA 66(215)-216, a=O.6 __ .. ,_ .. ______ . ___ . ___ .. ____ . _' ___ do._ .. __________ .. ______________ _ 

NACA 66(215)-014.. ____ 00 ___ " ____ .. ____ • ___ • _____ • ,___ Plain ______ .. ________________ • ______ _ 

NACA 66(215)-216, a=O.6 ____ ._ ._. ___ .. _. _______ . ____ . _______ do _______________________ • ______ _ 

NACA 65,-415 _______ .. ________ . ___ . ______ . ________________ .do_. ____ • ________________ • ______ _ 

NACA 653-418 ___ • ____ . _______ .00 ____ • _____ • ______ • _________ do ______________________________ _ 

NACA 65,-421. ___ . ___ ._. __ . ___________ .. ___ . ______ . ________ do ______________________________ _ 

NACA 65(112)-213 .. ________ . _____ . _____ ._. __ .. ______ ._. __ Internally balanced. _______ ._. _____ _ 

NACA 745.A317 (approx.). _____________ . ___ .. ___ ... _. ____ • ___ do ___ ..... _ ... __ .... __ .. _._ ... __ . 

NACA 64,3-013 (approx.)_. _______ .. ____ ... ____________ . ____ do __________ . ___________________ _ 

NACA 64,3-1(15.5) (approx.). ____ . ____ . __ . __________________ do ______________________________ _ 

I Approaching 1.00. 
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-------------
NACA 0009 
NACA 64,2-(1.4) (I3.5) 
NACA~66(215)-216, a=0.6_ 

1 Trne airfoil contoUl". 
~ Approaching 1.00. 

I 
CI 'l'ype of aileron 

(I) 

--------
0 0.20c plain 
.150 0.187c plain 
.100 0.20c plain 

Air-flow characteristics 
------------ Refer-

ence 
f M R 

.----- --------
1. 93 0.10 1.4XI06 63 
(') .18 4.0X106 ----
(~) I .33 9.0X106 64 

~ ( -' 
~;""'....-- ;~~~ 

-4r-r-+-+-~~-r-r_+_+~I-4~~2-~~,~,~+-+-~ 
rAileron defleelion, deq L---rr ", 

FIGURE 60.-Variation of the hinge-moment parameter ilea a with the equivalent chan~e in 
section angle of attack required to maintain a constant section lift coefficient for deflection 
of the aileron on the N ACA 0009, N ACA 64,2-(1.4)(13.5), and N ACA (\6(215)-21(\, a=O.6 
airfoil sections. Gaps sealed. 

For the purpose of evaluating the effect of airfoil shape on 
the aileron characteristics, it is desirable to make the com
parison with unbalanced ailerons to avoid confusion. Plots 
of the parameters for plain unbalanced flaps of true airfoil 
contour on threE' airfoil sections are shown in figure 60. 
The characteristics of the NACA 66(215)-216, a=0.6 section 
are essentially the same as those for the NACA 0009 airfoil 
within tIll' range of deflection for which data are available. 
The NACA 64,2-(1.4) (13.5) airfoil shows appreciably 
smaller valuE'S of 6.CIIO for a given value of 6.0:0 than the other 
sections prE'sented. No explanation for this difference can 
be offered, although some of the difference may result from 
the slightly smaller chord of the flap for this combination. 

The effects of using straight-sided ailE'rons instE'ad of ailer
ons of true airfoil contour are shown in figure 61 for two 
N ACA 6-series airfoils. One of the two combinations for 
which data are available was provided with an internal 
balance whE'reas the other combination was without balance. 
This differencE' prevents any comparison between the two 
combinations but doE'S not affect comparison of the two 
contours for each case. For the NACA 66(215)-216, a=O.6 
airfoil, the straight-sided aileron has more desirable charac
teristics for tll(' range of deflections for which dat.a arE' avail-

Basic airfoil CI Type of aileron Refer-
ence 

------------- ------------------
NACA 66(215)-216.a =0.6 0.100 0.20c plain 64 
NACA 63,4-4(17.8)(ap- .450 0.20c with 0.43c, inter- ----

prox.) nal balance 

8 
Aileron deflecfion, deg LI6/~ 

NACA 63, 4~4( 11.8) (opprox.j-.,-: f\ 
-/2- if;";'- 1\ .. _.r ... _ 
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~ Ef' '\ " ---) 
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FIGURE 61.-Variation of the hinge-moment parameter ACH5 with the equivalent change in 
section angle of attack required to maintain a constant section !itt coefficient for deflection 
of true-airfoil-contour and straight-sided ailerons on the NACA 63,4-4(17.8) (approx.) 
and the NAC A 66(215)-216, a=O.6 airfoil sections. Gaps sealed. 

able. It appears, however, that the straight-sided aileron 
would be lE'sS advantageous than the aileron of true contour 
for positive dE'flections greater than 12°. In the case of 
the NACA 63,4-4(17.8) (approx.) airfoil, the straight
sidE'd aileron appears to have no advantage over the aileron 
of true airfoil contour. The advantage of using straight
sided ailerons appears to depend markedly on the airfoil used 
but sufficient data are not available to determine the signif
icant airfoil parameters. Figure 62 shows that in one case 
the effE'ct of leading-edge roughness on the aileron character
istics is unfavorable. 

LEADING-EDGE AIR INTAKES 

The problem of designing satisfactory leading-edge air 
intakes is to maintain the lift, drag, and critical-speed 
characteristics of the sections while providing low intake 
losses over a wide range of lift coefficients and intake velocity 
ratios. The data of reference 65 show that desirable intake 
and drag characteristics can easily be maintained over a 
rather small range of lift coefficients for NACA 6-series air
foils. The data of reference 65 show that the intake losses 
increase rapidly at moderately high lift coefficients for the 
shapes tested. Unpublished data taken at the Langley 
Laboratory indicate that shapes such as those of reference 
65 have low maximum lift coefficients. Recent data show 
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that air-intake shapes can be provided for such airfoil sec
tions with desirable air-intake characteristics and without 
loss in maximum lift coefficient (fig. 63). Some pressure
distribution data for the air intakes shown in figure 63 in
dicate that the critical speed of the section has been lowered 
only slightly and that falling pressures in the direction of 
flow were maintained for some distance from the leading 
edge on both surfaces at lift coefficients near the design lift 
coefficient for the section. Sufficient information is not 
available to permit such desirable configurations to be de
signed without experimental development. 

INTERFERENCE 

The main problem of interference at low Mach numbers)s 
considered to be that of avoiding boundary-layer separation 
resulting from rapid flow expansions caused by the addition 
of induced velocities about bodies and the boundary-layer 
accumulations near intersections. No recent systematic 
investigations of interference such as the investigation of 
reference 66 have been made. 

Some tests have been made of airfoil sections with in
tersecting flat plates (reference 67). These configurations 
may be considered to represent approximately the condition 
of a wing intersection with a large flat-sided fuselage.:.i:1n 
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this case, the interference may be considered to result from 
the effect on the wing of the fully developed turbulent bound
ary layer on the fuselage or flat plate and the accumulation of 
boundary layer in the intersection. These tests showed 
little interference except in cases for which the boundary 
layer on the airfoil alone was approaching conditions of 
separation such as were noted with the less conservative 
airfoils at moderately high lift coefficients. 

Some scattered data on the characteristics of nacelles 
mounted on airfoils permitting extensive laminar fl.ow are 
presented in references 68 to 70. The data appear to in
dicate that the interference problems for conservative NACA 
6-series sections are similar to those encountered with other 
types of airfoil. The detail shapes 'for optimum interfering 
bodies and fillets may, however, be different for various 
sections if local excessive expansions in the flow are to be 
avoided. 

Some lift and drag data for an airfoil with pusher-propeller
shaft housings are presented in reference 71. These results 
indicate that protuberances near the trailing edge of wings 
should be carefully designed to avoid unnecessary drag 
increments. 

Another type of interference of particular importance for 
high-speed airplanes results in the reduction of the critical 
Mach number of the combination because of the addition of 
the induced velocities associated with each body (reference 
72). This effect may be kept to a minimum by the use of 
bodies with low induced velocities, by separation of inter
fering bodies to the greatest possible extent, and by such 
selection and arrangement of combinations that the points 
of maximum induced velocity for each body do not coincide. 

APPLICATION TO WING DESIGN 

Detail consideration of the various factors affecting wing 
design lies outside the scope of this report. The following 
discussion is therefore limited to some important aerodyna
mic features that must be considered in the application of 
the data presented. 

APPLICATION OF SECTION DATA 

Wing characteristics are usually predicted from airfoil
section data by use of methods based on simple lifting-line 
theory (references 73 to 76). Application of such methods 
to wings of conventional plan form without spanwise discon
tinuities yields results of reasonable engineering accuracy 
(reference 77), especially with regard to such important 
characteristics as the angle of zero lift, the lift-curve slope, 
the pitching moment, and the drag. Basically similar 
methods not requiring the assumption of linear section lift 
. characteristics (references 78 and 79) appear capable of 
yielding results of greater accuracy, especially at high lift 
coefficients. Further refinement may be made by consider
ation of the chordwise distribution of lift (reference 80). 
Wings with large amounts of sweep require special consider
ation (reference 81). 

The usual wing theory assumes that the resultant air force 
and moment on any wing section are functions of only the 
section lift coefficient (or angle of attack) and the section 
shape. According to this assumption, the air forces and 
moments on any section are not affected by adjacent sections 
or other features of the wing except as such sections or 
features affect the lift distribution and thus the local lift of 
the section under consideration. These assumptions ob
viously are not valid near wing tips, near discontinuities in 
deflected flaps or ailerons, near disturbing bodies, or for 
wings with pronounced sweep or sudden changes in plan 
form, section, or twist. Under such circumstances, cross flows 
result in a breakdown of the concept of two-dimensional 
flow over the airfoil sections. In addition to th('se 
cross flows, induced effects exist that are equivalent to a 
change in camber. Such effects are particularly marked 
near the wing tips for wings of normal plan form and for 
wings of low aspect ratio or unusual plan form. Lifting
surface theory (see, for example, reference 81) provides a 
means for· calculating wing characteristics more accurately 
than the simple lifting-line theory. 

Although span load distributions calculated for wings with 
discontinuities such as are found with partial-span flaps 
(references 82 and 83) may be sufficiently accurate for 
structural design, such distributions are not suitable for 
predicting maximum-lift and stalling characteristics. Until 
sufficient data are obtained to permit the prediction of the 
maximum-lift and stalling characteristics of wings with 
discontinuities, these characteristics may best be estimated 
from previous results with similar wings or, in the case of 
unusual configurations, should be obtained by test. 

The characteristics of intermediate wing sections must be 
known for the application of wing theory, but data for such 
sections are seldom available. Tests of a number of such 
intermediate sections obtained by several manufacturers for 
wings formed by straight-line fairing have indicated that the 
characteristics of such sections may be obtained with reason
able accuracy by interpolation of the root and tip character
istics according to the thickness variation. 

SELECTION- OF ROOT SECTION 

The characteristics of a wing are affected to a large extent 
by the root section. In the case of tapered wings formed by 
straight-line fairing, the resulting nonlinear variation of sec
tion along the span causes the shapes of the sections to be 
predominantly affected by the root section over a large part 
of the wing area. The desirability of having a thick wing 
that provides space for housing fuel and equipment and re
duces structural weight or permits large spans usually leads 
to the selection of the thickest root section that is aerody
namically feasible. The comparatively small variation of 
minimum drag coefficient with thickness ratio for smooth 
airfoils in the normal range of thickness ratios and the main
tenance of high lift coefficient for thick sections with flaps 
deflected usually result in limitation of thickness ratio by 
characteristics other than maximum lift and minimum drag. 
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The critical Mach number of the section is the most serious 
limitation of thickness ratio for high-speed airplanes. It is 
desirable to select a root section with a critical Mach number 
sufficiently high to avoid serious drag increases resulting from 
compressibility effects at the highest level-flight speed of the 
airplane, allowance being made for the increased velocity of 
flow over the wing resulting from interference of bodies and 
slipstream. Available data indicate that a small margin 
exists between the critical Mach number and the Mach num
ber at which the drag increases sharply. As airplane speeds 
increase, it becomes increasingly difficult and finally impos
sible to avoid the drag increases resulting from compressibil
ity effects by reduction of the airfoil thickness ratio. 

In the cases of airplanes of such low speeds that compressi
bility considerations do not limit the thickness ratio to values 
less than about 0.20, the maximum thickness ratio is limited 
by excessive drag coefficients at moderate and high lift 
coefficients with the surfaces rough. In these cases, tho 
actual surface conditions expected for the airplane should be 
considered in selecting the section. Consideration should 
also be given to unusual conditions such as ice, mud, and 
damage caused in military combat, especially in the case of 
multiengine airplanes for which ability to fly under such 
conditions is desired with one or more engines inoperative. 
In cases for which root sections having large thickness ratios 
are under consideration to permit the use of high aspect ratios, 
a realistic appraisal of the drag coefficients of such sections 
with the expected surface conditions at moderately high lift 
coefficients will indicate an optimum aspect ratio beyond 
which corresponding increases in aspect ratio and root thick
ness ratio will result in reduced performance. 

Inboard sections of wings on conventional airplanes are 
subject to interference effects and may be in the propeller 
slipstream. The wing surfaces are likely to be roughened by 
access doors, landing-gear retraction wells, and armament 
installations. Attainment of extensive laminar flows is, 
therefore, less likely on the inboard wing panels than on the 
outboard panels. Unless such effects are minimized, little 
drag reduction is to be expected from the use of sections 
permitting extensive laminar flow. Under these conditions, 
the use of sections such as the N ACA 63-series will provide 
advantages if the sections are thick, because such sections are 
more conservative than those permitting more extensive 
laminar flow. 

SELECTION OF TIP SECTION 

In order to promote desirable stalling characteristics, the 
tip section should have a high maximum lift coefficient and 
a large range of angle of attack between zero and maxi
Inurn lift as compared with the root section. It is also 
desirable that the tip section stall without a large sudden loss 
in lift. The attainment of a high maximum lift coefficient is 
often more difficult at the tip section than at the root section 
tor tapered wings because of the lower Reynolds number of 
fhe tip section. For wings with small camber, the most 
effective way of increasing the section maximum lift coeffi
cient is to increase the camber. The amount of camber used 
will be limited in most cases by either the critical-speed 
requirements or by the requirement that the section have 
low drag at the high-speed lift coefficient. 

The selection of the optimum type of camber for the tip 
section presents problems for which no categorical answers 
can be given on the basis of existing data. The use of a type 
of camber that imposes heavy loads on the ailerons compli
cates the design of the lateral-control system and increases 
its weight. The use of a type of camber that carries the lift 
farther forward on the section and thus relieyes the ailerons 
will, however, have little effect on the maximum lift coeffi
cient of the section unless the maximum-camber position is 
well forward, as for the N ACA 230-series sections. In this 
case a sudden loss of lift at the stall may be expected. The 
effects on the camber of modifications to the airfoil contour 
near the trailing edge, which may be made in designing the 
ailerons, should not be overlooked in estimating the charac
teristics of the wing. 

If the root sections are at least moderately thick, it is 
usually desirable to select a tip section with a somewhat 
reduced thickness ratio. This reduction in thickness ratio, 
together with the absence of induced velocities from inter
fering bodies, gives a margin in critical speed that permits the 
camber of the tip section to be increased. This reduction in 
thickness ratio will probably be limited by the loss in maxi
milm lift coefficient resulting from too thin a section. 

A small amount of aerodynamic washout may also be 
useful as an aid in the avoidance of tip stalling. The per
missible amount of washout may not be limited by the in
crease in induced drag, which is small for 10 or 2° of washout 
(reference 73). The limiting washout may be that which 
causes the tip section to operate outside the low-drag range 
at the high-speed lift coefficient. This limitation may be 
so severe as to require some adjustment of the camber to 
permit the use of any washout. 

A change in airfoil section between the root and tip may 
be desirable to obtain favorable stalling characteristics or 
to take advantage of the greater extent of laminar flow that 
may be possible on the outboal"d sections. Thus, such com
binations as an NACA 230-series root section with an NACA 
44-series tip section or an N ACA 63-series root section with 
an N ACA 65-series tip section may be desirable. 

It should be noted that the tip sections may easily be so 
heavily loaded by the use of an unfavorable plan form as to 
cause tip stalling with any reasonable choice of section and 
washout. Both high taper ratios and large amounts of 
sweepback are unfavorable in this respect and are particu
larly bad when used together, because the resulting tip stall 
promotes longitudinal instability at the stall in addition to 
the usual lateral instability. 

CONCLUSIONS 

The following conclusions may be drawn from the data 
presented. :a.:fost of the data, particularly for the lift, drag, 
and pitching-moment characteristics, were obtained at 
Reynolds numbers from 3 to 9XI06• 

1. Airfoil sections permitting extensive laminar flow, such 
as the NACA 6- and 7-series sections, result in substantial 
reductions in drag at high-speed and cruising lift coefficients 

. as compared with other sections if, and only if, the wing 
surfaces are fair and smooth. 
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2. Experience with full-size wings has shown that extensive 
lnminnr flows nre obtainable if the surface finish is as smooth 
ns thnt provided by sanding in the chordwise direction with 
No. 320 curborundmn paper and if the surface is free from 
smull scattered defects and specks. Satisfactory results 
are usually obtained if the surface is sufficiently fair to permit 
n straightedge to be rocked smoothly in the chordwise direc
tion without jarring or clicking. 

3. For ,vings of moderate thickness ratios with surface 
conditions corresponding to those obtained with current 
construction methods, minimum drag coefficients of the 
order of 0.0080 may be expected. The values of the mini
mum drag coefficient for such wings depend primarily on 
the surface condition rather than on the airfoil section. 

4. Substantial reductions in drag coefficient at high 
Reynolds numbers may be obtained by smoothing the 
wing surfaces, even if extensive laminar flow is not obtained. 

5. The maximum lift coefficients for moderately cambered 
smooth NACA 6-series airfoils with the uniform-load type 
of mean line are as high as those for NACA 24- and 44-series 
airfoils. The NACA 230-series airfoils have somewhat 
higher maximum lift coefficients for thickness ratios less 
than 0.20. 

6. The maximum lift coefficients of airfoils with flaps are 
about the same for moderately thick NACA 6-seriessections 
as for the NACA 23012 section but appear to be considerably 
lower for thinner N ACA 6-series sections. 

7. The lift-curve slopes for smooth N ACA 6-series airfoils 
are slightly higher than for N ACA 24-, 44-, and 230-series 
airfoils and usually exceed the theoretical value for thin 
airfoils. 

8. Leading-edge roughness causes large reductions in 
maximum lift coefficient for both plain airfoils and airfoils 
equipped with split flaps deflected 60°. The decrement in 
maximum lift coefficient resulting from standard roughness 
is essentially the same for the plain airfoils as for the airfoils 
equipped with the 60° split flaps. 

9. The effect of leading-edge roughness is to decrease the 
lift-curve slope, particularly for the thicker sections having 
the position of minimum pressure far back. 

10. Characteristics of airfoil sections with the expected 
surface conditions must be known or estimated to provide a 
satisfactory basis for the prediction of the characteristics of 
practical-construction wings and the selection of airfoils 
for such wings. 

11. The N A CA 6 series airfoils provide higher critical 
Mach numbers for high-speed and cruising lift coefficients 
than earlier types of sections and have a. reasonable range 
of lift coefficients within which high critical Mach numbers 
may be obtained. 

12. The NACA 6-series sections provide lower predicted 
critical ::\-fach numbers at moderately high lift coefficients 
than the earlier types of sections. The limited data avail
able suggest, however, that the NACA 6-series sections retain 
satisfactory lift characteristics up to higher Mach numbers 
than the earlier sections. 

13. The NACA 6-series airfoils do not appear to present 
unusual problems with regard to the application of ailerons. 

14. Problems associated with the avoidance of boundary
layer separation caused by interference are expected to be 
similar for conservative NACA 6-series sections and other 
good airfoils. Detail shapes for optimum interfering bodies 
and fillets may be different for various sections if local exces
sive expansions in the flow are to be avoided. 

15. Satisfactory leading-edge air intakes may be provided 
for NACA 6-series sections, but insufficient information exists 
to allow such intakes to be designed without experimental 
development. 

LANGLEY ::\-IEMORIAL AERONAUTICAL LABORATORY, 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., March 5,1945. 



APPENDIX 

METHODS OF OBTAINING DATA IN THE LANGLEY TWO·DIMENSIONAL LOW.TURBULENCE TUNNELS 

By MILTON M. KLEIN 

DESCRIPTION OF TUNNELS 

The Langley two-dimensional low-turbulence tunnels are 
closed-throat wind tunnels having rectangular test sections 
3 feet wide and 7% feet high and are designed to test models 
completely spanning the width of the tunnel in two
dimensional flow. The low-turbulence level of these tunnels, 
amounting to only a few hundredths of 1 percent, is achieved 
by the large contraction ratio in the entrance cone (approx. 
20: 1) and by the introduction of a number of fine
wire small-mesh turbulence-reducing screens in the widest 
part of the entrance cone. The chord of models tested in 
these tunnels is usually about 2 feet, although the characteris
tics at low lift coefficients of models having chords as large 
as 8 feet may be determined. 

The Langley two-dimensional low-turbulence tunnel oper
ates at atmospheric pressure and has a maximum speed of 
approximately 155 miles per hour. The Langley two
dimensional low-turbulence pressure tunnel operates at pres
sures up to 10 atmospheres absolute and has a maximum 
speed of approximately 300 miles per hour at atmospheric 
pressure. Standard airfoil tests in this tunnel a,re made of 
2-foot-chord wooden models up to Reynolds numbers of 
approximately 9X 106 at a pressure of 4 atmospheres absolute. 

The lift and drag characteristics of airfoils tested in these 
tunnels are usually measured by methods other than the use 
of balances. The lift is evaluated from measurements of the 
pressure reactions on the floor and ceiling of the tunnel. The 
drag is obtained from measurements of static and t9tal 
pressures in the wake. Moments titre usually measured by a 
balance. 

,SYMBOLS 

AI, A 2 , •• An coefficients of potential function for a 
symmetrical body 

a fraction of chord from leading edge over 
which design load is uniform 

B dimensionless constant determining width 
of wake 

C chord 
Cd drag coefficient corrected for tunnel-wall 

effects 
ca' drag coefficient uncorrected for tunnel-wall 

54 

effects 
drag coefficient measured in tunnel 
section lift coefficient corrected for tunnel

wall effpcts 

C/ 

F 

Hemax 
hT 
K=c/ 

L 
L' 

m 

n 

8 

U 

v 
~V 

Cd T 

section lift coefficient uncorrected for tunnel-
wall effects 

design lift coefficient 
lift coefficient measured in tunnel 
moment coefficient about quarter-chord 

point corrected for tunnel-wall effects 
moment coefficient about quarter-chord 

point measured in tunnel 
average of velocity readings of orifices on 

floor and ceiling used to measure blocking 
at high lifts 

average value of F in low-lift range 
potential function used to obtain 'I)-factor 
total pressure in front of airfoil 
total pressure in wake of airfoil 
coefficient of loss of total pressure III the 

wake (Ho~HI) 
maximum value of He 
tunnel height 

true lift resulting from a point vortex 
lift associated with a point vortex as 

measured by integrating manometers 
upstream limit of integration of floor and 

ceiling pressures 
downstream limit of integration of floor 

and ceiling pressures 
resultant pressure coefficient; difference 

between local upper- and lower-surface 
pressure coefficients 

static pressure in the wake 
free-stream dynamic pressure 

static-pressure coefficient (HoqO P) 
static-pressure coefficient in the wake 

(Ho qo PI) 
distance along airfoil surface 
velocity, due to row of vortices, at any 

point along tunnel walls 
free-stream velocity 
increment in free-stream velocity due to 

'blocking 
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V' 
V" 

v 
w 

y 

Y 
ilt 

Yw 

z 

1/a 

1/b 

1/x 
A 

corrected indicated tunnel velocity 
tunnel velocity measured by static-pressure 

orifices 
local velocity at any point on airfoil surface 
potential function for flow past a symmetri

cal body 
distance along chord' or center line of 

tunnel 

variable of integration (B:w) 
distance perpendicular to stream direction 
ordinate of symmetrical thickness distri-

bution 
distance perpendicular to stream direction 

from position of Hcmax 

slope of surface of symmetrical thickness 
distribution 

complex variable (x+iy) 
angle of zero lift 
section angle of attack corrected for tunnel-

wall effects. 
section angle of attack measured in tunnel 
strength of a single vortex 
ratio of measured lift to actual lift for any 

type of lift distribution 
'IJ-factor for additional-type loading 
'IJ-factor for basic mean-line loading 
'IJ-factor applying to a point vortex 
component of blocking factor dependent on 

shape of body 
quantity used for correcting effect of body 

upon velocity measured by static-pressure 
orifices 

component of blocking factor dependent on 
size of body 

potential function 
stream function 

MEASUREMENT OF LIFT 

The lift carried by the airfoil induces an equal and opposite 
reaction upon the floor and ceiling of the tunnel. The lift 
may therefore be obtained by integrating the pressure dis
tribution along the floor and ceiling of the tunnel, the inte
gration being accomplished with an integrating manometer. 
Because the pressure field theoretically extends to infinity in 
both the upstream and the downstream directions, not all the 
lift is included in the length over which the integration is 
performed. It is therefore necessary to apply a correction 
factor'T] that gives the ratio of the measured lift to the actual 
lift for any lift distribution. The calculation was performed 
by first finding the correction factor 'lJx applying to a point 
vortex and then determining the weighted average of this 
factor over the chord of the model. 

The factor 'T]x was obtained as follows: The image system 
which gives only a tangential component of velocity along the 
tunnel walls is made up of an infinite vertical row of vortices 
of alternating sign as shown in figure 64. If the sign of the 
vortex at the origin is assumed to be positive, the complex 
potential functionj for this image system is . 

j ir I . h 'I1'zir I . h (Z-ihT) 
=2'11' og sm 2hT -2'11' og sm '11' ~ 

where 

r strength of a single vortex 

z complex variable (x+iy) 

hT tunnel height 

y 

.+ +"+ 

m 

.-

Upperwo// .... n 

Lower woll·· .... 

(18) 

FIGURE 64.-Image system for calculation of ~·ractor in the Langley two·dimensional 
low·turbulence tunnels. 

The velocity u, due to the row of vortices, at any point 
along the tunnel walls where 

is then obtained as 

hT 
y=""2 

r 'I1'X 
u=2hT sech hT (19) 

where x is the horizontal distance from the point on the wall 
to the origin. The resultant pressure coefficient P R is then 
given by 

4u 
PR==V 

2r 'I1'X 
=hTVsech hT 

where V is the free-stream velocity. 

(20) 

The lift manometers integrate the pressure distribution 
along the floor and ceiling from the downstream position n 
to the upstream position m (fig. 64). For a point vortex 
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located a distance x from the origin along the center line of 
the tunnel, the limits of integration become n-x and m-x. 
The lift L' associated with a point vortex, as measured by 
the integrating manometers, is given by 

(21) 

where qo is the free-stream dynamic pressure. 
The true lift L resulting from the point vortex is given by 

L=2Qor 
V 

The correction factor 'YJx is then 

1 in-x 7rX = h- sech -h dx 
T m-x T' 

which yields 

(22) 

In the Langley two-dimensional low-turbulence tunnels, 
the orifices in the floor and ceiling of the tunnel used to 
measure the lift extend over a length of approximately 13 
feet. A plot of 1]x against x for the Langley two-dimensional 
low-turbulence pressure tunnel is shown in figure 65. The 
1]-factor for a given lift distribution is obtained from the 
expression 

r 11'YJ" d (~) J chord C 

'YJ=f (X) l1d -
chord C 

1.0 

.8 
~r- ---i---... t--

.6 

.4 

o -2 ~ 0 I 2 3 4 5 6 
Disfonce downsfream from reference point in funnel, x) ft 

FIGURE 65.-Lift efficiency factor n. for a point vortex situated at various"positions along the 
center line of the tunnel. 

The values of 'YJb and 'YJa for the Langley two-dimensional 
low-turbulence pressure tunnel are given in the following 
table for a model having a chord length of 2 feet, where 'YJb is 
the 1]-factor corresponding to the basic mean-line loading 
(indicated by the value of a) and 'YJa is the 'YJ-factor for the 
additional type of loading as given by thin-airfoil theory: 

a 

1.0 0.934; 
.8 .9342 
.6 .9336 
.4 .9330 
.2 .9325 

o .9322 

'Ia=O.92U6 

In order to check the variation of 'YJa with variations in the 
additional type of lift distribution, the value of 'YJa was re
calculated for the class C additional lift distribution given in 
figure 6 of reference 74. The value of 'YJa for this case was 
0.9304, as compared with 0.9296 for a thin airfoil. Because 
of the small variation of 'YJa with the type of additional lift, 
the value for thin-airfoil additional lift was used for all cal
culations. The lift coefficient of the model in the tunnel 
uncorrected for blocking c/ is given in terms of the lift co
efficient measured in the tunnel CIT and the design lift coeffi
cient of the airfoil Cit by the following expression: 

(24) 

Because 'YJb does not differ much from 'YJa, it is not necessary 
that the basic loading or the design lift coefficient be known 
with great accuracy. 

Because of tunnel-wall and other effects, the lift distribu
tion over the airfoil in the turinel does not agree exactly with 
the assumed lift distribution. Because of the small varia
tions of 'YJ with lift distribution, errors caused by this effect are 
considered negligible. It can also be shown that. errors caused 
by neglecting the effect of airfoil thickness on the distri
bution of the lift reaction along the tunnel walls are small. 

MEASUREMENT OF DRAG 

The drag of an airfoil may be obtained from observations 
of the pressures in the wake (reference 84). An approxi
mation to the drag is given by the loss in total pressure of the 
air in the wake of the airfoil. The loss of total pressure is 
measured by a rake of total-pressure tubes in the wake. 
When the total pressures in front of the airfoil and in the 
wake are represented by Ho and HI, respectively, the drag 
coefficient obtained from loss of total pressure Cd

T 
is 

Cd = r Hcdyw 
T Jwake C 

(25) 

where 

He coefficient of loss of total pressure in the wake (Ho-_HI) 
Qo 
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Yw d istanc(' perpendicular to stream direetion froIll position 
of fIema;: 

If thr static pressure in the wak(, is rrpresented by PI! 
the tl'U(, drug coeffieient uncorrected for bloeking ca' may be 
shown to be (refel'l'nee 84) 

(26) 

I 8 · h' ffi' t' th k Ho-PI 
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The assumption is made that the variation of total pressure 
acrcss tIl(' wake can be represented by a normal probability 
curve. Tht' drag cOPfficient ca' is tllPn easily obtainable from 
measurements of CdT by means of a factor K, the ratio of c/ 
to Cd

T
, which depC'uds only on 8 1 and the maximum value of 

lIe. If the maximum value of He is rt'prf'sentf'd by H emax' 
tIl(' NlllH tiOll of the normal probability cune is 

where B is a dinH'llSiollless eonstnnt that determines the 
width of the wlIk(,. If a ('onvenient varinble of intpgration 

Y Byw' 1 I . K' = .. - .. IS use( , t Ie ratIO IS 
c 

and is ind('pend<'llt of the width of the wah. TIl(' quantity 
K has b('PI1 evaluatpd for variolls values of He and 8 1 bv . rna;c .... 

assuming 8 1 to b(' constant aeross thE' wake. The drag 
coeffieipnt c/ may thus be obtained from tunn('l mNl.sur('-
ments of Cd

T
, He , and 81• A plot of K as a funetion of He mu mn 

with 8 1 as param('t!:'r is given in figurE' 66. A paralIc,1 t1'l'at
mpnt of this probll'm is given in rpfrr(,lH'P 85. 

TUNNEL-WALL CORRECTIONS 

In two-dim(,llsional flow, the tunnE'1 walls may be eOllV(,I1-
iently eOllsid(,l'('(i as having two distinct dff'cts upon thE' flow 
over a mod('l in a tunnrl: (1) an inerease in the frE'e-stream 
velocity in titP neighborhood of thE' model bpcausr of a 
(;onstrietion of tIl<' flow and (2) a distortion of the lift 
distribution from tIl!' indu(,E'd curvature of the flow. 

The inca-cast' in fn.>('-str('am vplocity caused by the tunnel 
walls (blocking pfl'Pet) is obtaill('d from consideration of an 
infinite vprtieal "ow of imag('s of a symmetrical body as 
given in rpf(,I'('I\(,(, 86; tll(> irriag('s rl'pn'sent the ('fl'(>d of th(' 
tunnd wnlls. 

f-- j..--'.J:..... --t- q, 

.4 

.I .3 .4 .5 .6 .7 .8 .9 J.O 

FH.CRE tl(t--Plot of ](us u function of l1cmaz with 8 1 as U paramC'ter. 

TIll' pou'lltial function w for a symm('trical body IS 
ginll b~-

(28) 

where ,. is tlll' fl'('l'-str('am veloeity and the coefficients AI, 
A 2 , ••• H1'(' comph,x. If the tunnel ht'ight is large COIll

pal'l'd to tIl(' size of tIll' body, POW('I'S of liz greater than 1 
may b(, Iwgl(>ded and 

(29) 

This opl'l'Htion is ('quivaknt to rpplacing the body by a eil'elc 
of whieh the doublpt strength is 2'llAI ; the term AI/z repn'
Sl'nts thr disturbnnec to the fr('('-stn'am flow. The total 
indu('pd Y('locity at the center of tIl(' body dw' to all thf' 
imng('s is ('XP"('ss('d ill l'('f(,l'en('(' 86 as 

(30) 

1 
where the term Al is the same as the term "4 'At2 V of 

reference 86. 
For eOllveniellep in tunnd cal('ulatiolls, the t'xpressioll of 

A F may be written 

where 

AV 
V=Au (31) 

(32) 

(33) 

The faetor 0' d('pends only Oil the size of the body and is 
easily calculatE'd. The factor A depends on the shape of the 
body and is more diffi('ult tocttlculate. For bodi('s such as 



58 REPORT NO. 824-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

Rankine ovals and ellipses, simple formulas may be obtained 
for calculating A. In the general case, the value of A may 
be obtained from the velocity distribution over the body by 
the expression 

A=l: .fol ~ V~l+(~J dG) (34) 

where v is the velocity at any point on the airfoil surface and 
dy ddx is the slope of the airfoil surface at any point of which 
the ordinate is Yt. 

y 
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FIGURE 67.-Sketch for derivation of A-factor. 

In order to obtain this expression, consider the flow past a 
symmetrical body as shown in figure 67. The potential 
function for this flow is given by equation (28). Differen
tiating and multiplying equation (28) by z gives 

The line integral about a closed curve fa z ~~ dz will 

depend only on the term -Adz and, from the theory of 
residues, is given by 

but 

r dWd 'A Jo z dz z=-211'~ 1 

dw 
z dz dz=z dw 

= (x+iy) (dcjJ+i dt/;) 

where e{! is the potential function and if; is the stream func
tion. On the surface of the body dif;=O, so that 

r z ddW dz= { x de{!+i { y de{! 
Jc z Jo Jo 

(35) 

Since the body is symmetrical, the term x de{! will have 
equal numerical values but opposite signs at corres,Ponding 

points of the upper and lower surfaces, and fax de{! will 

vanish. The term y de{! will have equal values at corre-, 

sponding points of the upper and lower surfaces, and 

{ y de{! may be replaced by an integration over the upper .10 
surface; therefore, 

fo z ~~ dz=2i f y de{! (counterclockwise direction) 

or 

Reversing the path of integration, replacing de{! by vds, replac

ing ds by ~ 1 + d:~2 dx, and solving for A = lC~~l gives 

A=.16 (I'lL ~ 11 + (dyt)J d(~) 
11'.10 c V -V dx c 

where the integration is taken from the leading edge to the 
trailing edge over the upper surface. 

In addition to the error caused by blocking, an error .}xists 
in the measured tunnel velocity'because of the interference 
effects of the model upon the velocity indicated by the static
pressure orifices located a few feet upstream of the model 
and halfway between floor and ceiling. In order to correct 
for this error, an analysis was made of the velocity distribu
tion along the streamline halfway between the upper and the 
lower tunnel walls for Rankine ovals of various sizes and thick
ness ratios. The analysis showed'that the correction could 
be expressed, within the range of conventional-airfoil 
thickness ratios, as a product of a thickness factor given 
by the blocking factor A and a factor ~ which depended upon 
the size of the model and the distance from the static-pressure 
orifices to the midchord point of the model. The corrected 
indicated tunnel velocity V' could then be written 

V'= V"(1+A~) (36) 

where V" is the velocity measured by the static-pressure 
orifices. In the Langley two-dimensional low-turbulence 
tunnels, the distance from the static-pressure orifices to the 
midchord point of the model is approximately 5.5 feet; the 
corresponding value of ~ for a 2-foot-chord model is approxi
mately 0.002. 

In order to calculate the effect of the tunnel walls upon the 
lift distribution, a comparison is made of the lift distribution 
of a given airfoil in a tunnel and in free air on the basis of 
thin-airfoil theory. It is assumed that the flow conditions 
in the tunnel correspond most closely to those in free air when 
the additional lift in the tunnel and in free air are the same 
(reference 87). On this basis the following corrections are 
derived (reference 87), in which the primed quantities refer 
to the coefficients measured in the tunnel: 

cl=[1-2A(o+~) -u]cz' (37) 
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are usually negligible for 2-foot-chord models in the Langley 
two-dimensional low-turbulence tunnels. 

When the effect of the tunnel walls on the pressure distri
bution over the model is small, the wall effect on the drag is 
merely that corresponding to an increase in the tunnel E!peed. 
The correction to the drag coefficient is therefore given by the 
following relation: ' 

ca=[1-2A(u+m ca' (40) 

Similar considerations have been applied to the development 
of corrections for the pressure distribution in reference 87. 

Equation (40) neglects the blocking due to the wake, such 
blocking being small at low to moderate drags. The effect 
of a pressure gradient in the tunnel upon loss of total pressure 
in the wake is not easily analyzed but is estimated to be small. 
The effect of the pressure gradient upon the drag has there
fore been disregarded. When the drag is measured by a 
balance, the effect of the pressure gradient upon the drag is 
directly additive and a correction should be applied. For 
large models, especially at high lift coefficients, the effect of 
the tunnel walls is to distort the pressure distribution appre
ciably. Such distortions of the pressure distribution may 
cause large changes in the boundary flow and no adequate 
corrections to any of the coefficients, 'particularly the drag, 
can be found. 

CORRECTION FOR BLOCKING AT mGH LIFTS 

SO long as the flow follows the airfoil surface, the foregoing 
relations account for the effects of the tunnel walls with suffi
cient accuracy. When the flow leaves the surface, the block
ing increases because of the predominant effect of the wake 
upon the free-stream velocity. Since the wake effect shows 
up primarily in the drag, the increase in blockilig would 
logically be expressed in terms of the drag. The accurate 
measurement of drag under these conditions by means of a 
rake is impractical because of spanwise movements of loW-
energy air. A method of correcting for increased blocking 
at high angles of attack without drag measurements has 
therefore been devised for use in the Langley two-dimensional 
low-turbulence tunnels. ' 

Readings of the floor and ceiling velocities are taken a few 
inches ahead of the quarter-chord point and averaged to 
remove the effect of lift. This average F, which is a measure 
of the effective tunnel velocity, is essentially constant in the 
low-lift range. The quantity FIFo, where Fo is the average 
value of F in the low-lift range, however, shows a variation 

from unity in the high-lift range for ap.y airfoil tested in the 
tunnel; this variation indicates a change in blocking at high 
lifts. A plot of FIFo against angle of attack cxo' for a 2-foot
chord model of the NACA 643-418 airfoil is given in figure 68. 
The quantity FIFo is nearly constant for values of cxo' up to 
12°; but for values of Il'o' greater than 12°, FIFo increases and 
the increase is partIcularly noticeable at and over the stall. 
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FIGURE 68.-Additional blocking factor at the tunnel walls plotted against angle of attack 
for the NACA 643-418 airfoil. 

A theoretical comparison was made of the blocking factor 
Au and the velocity measured by the floor and ceiling orifices 
for a series of Rankine ovals of various sizes and thickness 
ratios. The quarter-chord point of each oval was located at 
the pivot point, the usual position of an airfoil in the tunnel. 
The analysis showed the relation between the blocking factor 
Au and the change in F to be unique for chord ler gths up 
to 50 inches in that different bodies having the same blocking 
factor Au gave approximately the same value of F. For 
chords up to 50 inches, the relationship is 

A: =0.45 (~ -1) (41) 

where A VIV is the true increment in tunnel velocity due to 
blocking; The foregoing relation :was adopted to obtain the 

correction to the blocking in the range of lifts where ~o > 1. 

Considerable uncertainty exists regarding the correct 
numel1ical value of the coefficient occurring in equation (41). 
If a row of sources, rather than the Rankine ovals used in 
the present analysis, is considered to represent the effect of 
the wake, the value of the coefficient in equation (41) would 
be approximately twice the value used. Fortunately, the 
correction amounts to only about 2 percent at maximum lift 
for an extreme condition with a 2-foot-chord model. Further 
refinement of this correction has therefore not been attempted. 

COMPARISON WITH EXPERIMENT 

A check of the validity of the tunnel-wall corrections has 
been made in reference 87, which gives lift and moment 
curves for models having various ratios of chord to tunnel 
height, uncorrected and corrected for tunnel-:-wall effects. 
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The general agreement of the corrected curves shows that 
the method of correcting the lifts and moments is valid. 

A comparison is made in reference 87 between the theoreti
cal correction factor (equation (40)) and the experimentally 
derived corrections of reference 88. The theoretical cor
rection factors were found to be in good agreement with those 
obtained experimentally. 

In order to check the validity of the 'I-factor, a comparison 
has been made of lift values obtained from pressure dis:.. 
tributions with those obtained from the integration of the 
floor and ceiling pressures in the tunnel. A comparison for 
two airfoils given in figure 69 shows that the two methods of 
measuring lift give results that are in good agreement. The 
'I-factor has also been checked by comparison of the lift 
obtained _ from balance measurements with the integrating
manometer values in figure 70. 

Finally, a check has been made of the method of correcting 
pressure distributions (reference 87) for NACA 6-series air
foils of two chord lengths at zero angle of attack in figure 71, 
in which the pressure coefficients are plotted against chord
wise position x/c. The agreement between the corrected 
pressure distributions for both models verifies the method of 
making the tunnel-wall corrections. 
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Model 

TABLE H.-MAXIMUM LIFT AND STALLING CHARACTERISTICS OF MODELS TESTED IN THE NACA 19-FOOT PRESSURE TUNNEL 

Contlguration 

Plan view 

c--:-------=--=:J 

Flap 

Geometric characteristics 

Flap angle 
(deg) 

Flap.chord Flap span I 
R 

Front view Inboard Outboard ~fi 
·------1---------1----'---,---

None None 

(percent c) (percent b) I 
Jr. I cr, I cr. br, I bro 

1 No~~ -Non~ No:I-~ne 1- 2. 6XIO~· 

CLmr.u: 

1.26 
1. 36 
1. 41 

Sections: 
Root: NAGA 66(215)-216 
Tip: NAGA 66(215)-216 
A=7.00 
~=1.00 
Geometric washout, 0.00 

Split 

I 
I 
1 

T 
1 

60 
1 
1 

I 
I 

I 

I 
1 

I 

I 
.j, 

60 

I 
I 
1 

10 

20 

30 

10 

20 

30 

I 
! 

1 
10 

20 

30 

63 
I 
I 

I 
I 
I 
I 

I 
1 
1 

-J. 

1 3.6 
1 4.6 
1 
1 2.6 1.72 

1. 78 
1.84 

1 3.6 
I 4.6 

j 
37 

I 
-J. 

2.6 
3.6 
4.6 

2.6 
3.6 
4.6 

1.94 
1. 98 
2.07 

1. 97 
2.03 
2.06 

2.6 2.04 
3.6 2.11 
4.6 2.15 

2.6 2.40 
3.6 .2.50 
4.6 2.51 

2.6 2.43 
3.6 2.49 
4.6 2.52 

Stalling characteristi cs 

Abrupt stall progresses 
from root toward tip for 
flaps neutral and p~rtial
span flaps detlected; no 
data for fnll-span· flaps 

-1---1 I-~I--I--I-.--I--I--I------I ---I 2. lX106 1. 15 Fowler Fowler o o 30 53 30 37 

II ~ 
Sections: 

Root: NAGA 66(215)-116 
Tip: NACA 66(215)-216 
A=7.0 
~=0.5 
Geometric washout, 1.50 

I 

.j, 

I 

j 
30 

35 

30 

I 
I 

I 
.j, 

30 

I 

I I 
1 1 

I 
1.

1 

j 
I 
I 

I 
1 

2.8 1.29 
3.3 1. 27 

2. I 2.29 
2.9 2.44 
3.4 2.49 

2. I 2.36 
2.9 2.49 
3.4 2.54 

2. I 3.13 
2.9 3.31 

With flaps neutral, satis
factory; with flaps de
flected, extremely abrupt 
stall envelops entire 
wing 

3.4 3.29 
--I 1--1--1--1--1---1---- ·--1 

III ~ 

IV ~ 

v ~ -==== ~ 

Sections: 
Root: NACA 65(318)-{)19 
Tip: NAGA 65(318)-{)15 
A=7.36 
~=O.25 

None None 3.0XJ06 
5. I 
7.4 

1.18 
1. 37 
1.43 

Abrupt stall with satis
factory progression to· 
ward tips 

I~metric washout; 3.60 

Sections; 
1----1--1--1--\-·-1---1--1---1---1---

Root: NAGA 65(318)-{)19 
Tip; NACA 65(318)-{)15 
A=7.36 
~=0.25 
Geometric washout, 4.00 

Sweep back of 0.25 chord line 
21.930 

None Noue 3.3XI0' 
5.6 
7.2 

1.17 
1.31 
1. 34 

se~gf:~ACA66(215)-(1.S)(15.5), Pliin Nine I-o-'=='-y-'-__ -__ =_:_~ ~6-0-'----.. -.--. '-~-:~-X-1;; -i-:-~~-I 

Unsatisfactory stall; a 
strong outflow resulted 
in severe tip stall 

a=0.6 1 1 1 I 7 8 1 55 

a=O.6 -J. 50 _ ... _.. -J. -J. 3.3 2.10 factory. progresslOn to· 
Tip; NACA 66(215)-(1.8)12, 1 I I 1 • • I Abrupt stall wit~ satis-

A =5.82 I 5.2 2.19 ward UPO; 
X=0.46 . 5.8 2.21 

___ I Geometric washout, 2.50 
__ • ______________ ~ __ ,,,,,:~, 

:-----., I I ,I ,----

~ 

~ 
.." 

~ 
>-3 

~ 
? 
00 
~ 
>I> 

~ 
~ ..... 
o 
~ 

~ 
> 
Sl ..... 
Ul o 
::tI 
><i 
o o 
~ 
~ ..... ...., 
>-3 
trl 
trl 

"'J o 
::tI 
> 
trl 
::tI o 
~ 
> q 
>-3 ..... 
o 
Ul 



- Sections: Plain None 

C b:=J 
Root:NACA66(215)-(1.8) (15.5), 

t}::=-
a=0.6 I I VI ---.::J == Tip: NACA 66(215)-(1.8)12, 
a=0.6 1 I 

A =5.82 ,1. 
>'~0.46 
Geometric washout, 2.50 

I 
Sections: 

~ 
Root: Mod. N ACA 65,3-318, 

D 
a=O.8 Double Double 

VIl 
I~ 

Tip: Mod. NACA 65(318)-316, 
a=0.8 slotted slotted 

,1. ,1. A=8.09 
>'=0.5 
Geometric washout, 0.00 

\ 
(\ 

C--.~ 
Sections: Zap Zap Root: NACA 67(115)-116 

VUI =-=0== 
Tip: NACA 67,1-115 I I 

-== - P' 
A=6.7 ,1. ,l-
>'=0.4 Split None 

V 
Geometric washout, 2.00 ,l- Split 

f\ : 

-~ Sections: 

~ 
Root: NACA 64(215)-418 

IX -=0= Tip. N A CA 66,2x-415 None None 
~ A=8.92 Split ,l-

>.=0.33 

V 
Geometric washout, 1.00 

---. r . 
d~b Sections: 

X 
Root: N ACA 64(215)-418 None None 

'v-o-. Tip: NACA 66,2x-415 
v -v A=8.92 Split 

>'=0.33 ./. Split 

V 
Geometric washout, 1.00 

----
II 

d Sections: 
Root: NACA 64(215)-418 

XI ~ ~ Tip: NACA 66,2x-415 None None -, ,------
\r- A=8.92 Split .\. 

),,=0.33 
Geometric washout, 1.00 

V 

t Extensible None 

c:t l1t 
slotted 

I 
Sections: 

1 Root: NACA 63(420)-418, 

XII ---:'. sr~ ~=-
a=l.O 

Tip: NACA 65M15. a=1.0 - v A=7.77 

1 
V 

>'=0 . .10 
Geometric washout, 2.80 Split 

-
• Propellers win<lmi!ling. 

0 --.6.-- 25 -._----
I 
I 
I 

.10 . ------ L -------

--------

0 0 2.1 2.5 
I 1 55 30 ,1. 

------

0 0 35 35 
48 ,1. 1 1 ,l- 48 
60 20 20 
,l- 60 ,l- ,l-

------

------- -----.-
55 20 

------

------- ----------55-- 20 
,l- 55 .!- 20 

------

------- -------
55 20 

-------
0 .------ 25 -------

I 35 -_.---- -------

60 ------- -.-._--

------

60 ------- 3.3XI0' 

1 
5.3 
6.0 

------- 3.3 
5.1 
5.8 

--

.10 
I 

48 5.1XlO' 
I 

,1. ,1. 5.1 

--

60 

1 
38 2.4XI0' 

1 2.4 
2.4 

60 38 2.5 
,l- .!- 2.5 

--

· ------- 3.5X10' 
60 ----.-- 3.6 

--.--

· ------- 3.5XlO' 
60 
.!- --ao--- 3.6 

3.5 

--

· ------- 4.0XlO' 
60 ------- 4.1 

-- -------
70 

I 
---- .. -- 3.1XlO' 

4.1 
4.8 

------- 3.1 
4.0 
4.9 

--~---- 3.1 
4.1 
4.8 

--

1.34 
1.39 
1.39 

1.87 
1.91 
1.92 

1.33 

2.85 

1.32 
2.25 
2.77 
1. 91 
2.22 

138 
1. 97 

1.42 
1.87 
2.11 

1.47 
1. 95 

01.37 
01.42 
01.45 

<>2.19 
02.20 
02.21 

02.00 
02.06 
02.06 

Abrupt stall with satis-
factory progression to-
ward tips 

Satisfactory 

No data 

Satisfactory 

Satisfactory 

Satisfactory 

Sati.factory 

1 

I 

I 

I 

I 

I 

I 

I 

I 

I 

I 
I 

I 
I 

I 
I 

I 
·1 

I 

w 
q 
~ 

~ 
~ 
>1 
o 
";j 

:.-..... 
~ 
";j 

S 
t< 

t::1 

~ 

~ 
Cl 



TABLE II.-MAXIMUM LIFT AND STALLING CHARACTERISTICS OF MODELS TESTED IN THE NACA 19-FOOT PRESSURE TUNNEL-Concluded 
---

I 
Configuration Flap Flap angle Flap chord Flap span 

(deg) (percent c) (percent b) 
Model Geometric characteristics R CLma~ Stalling characteristif!S 

Plan view Front view Inboard Outboard tJ" I a/. c" CI. bl, bl. 
-------- -

None None -----.- ---r ----.-- ------. ---- .. -- ------- 2.4XI06 1. 21 
I 3.8 1.37 
I 5.3 1.45 

F Split I 60 

1 

20 ------- 65 ----._- 2.4 1. 76 

~-~ lL-d I I 3.8 1. 89 

Sections: 1 5:4 1.00 

Roots: NACA 66(215)-016 Extensible I I I ----~ Tip: NACA_66(215)-o16 trailing edge 45 .J. I -._-._- -._---- 2.5 1. 72 
XIII A =5.34> 1 I 

I 
3.7 1.86 

>'=0.68 j 

1 
5.2 1. 98~ 

Geometric:washout, 0.00 sPt 60 20 30 2.4 1.99 Satisfactory 
V I I I I 

3.6 2.03 

1 I 

1 
5.3 2.13 

I I 
Split .J. 60 -l- .(, .J. 2.4 2.01 

3.8 2.15 
5.3 2.21 

-----------
Extensible None 0 ------- 20 ------- 60 ------- 3.6X1Q6 1. 32 

,.... slotted I 
1 I 5.1 1.42 

I I 61 1. 46 
I I 

c:.L Ol1,:J Sections: .J. I 35 ------- I -------

I 
------- 3.6 2.27 

~ 
Root: NACA65(318)-1(18.5) I I 

5.2 2.34 Abrupt stall with satisfac-
XIV Tip: NACA 66(215)-216 6.3 2.37 tory progression toward 

A=5.52 tips 
>'=0.48 Slotted I 50 ------- I -------

I 
------- 3.5 2.04 

Geometric washout, 3.00 

1 
I 4.9 2.13 

V 
I 5.9 2.16 
I 1 Split 50 ------- .J. ------- ------- 3.5 2.02 

4.S 2.12 

I 5.9 2.17 
--------,.... 

~ ~ 
Sections: Slotted None 0 ------- 20 ------- 60 -.----- 3.4XI06 1. 55 

Root: NACA 23015.6 1 
I I I 4.8 1.58 

~ Tip: NACA 23009 1 5.6 1.60 Very abrupt stall, leftwing 

XV A=5.5 I stalling very rapidly, for 

>'=0.52 50 ------- .J. ------- .J. ------- 3.4 2.46 all conditions 

Geometric washout, 0.00 4.8 2.50 

V 
5.6 2.52 

--- --------------
p. Extensible None 0 ------- 24 ------- 50 ------- 3.0XlO' 1.34 

slotted I 

I 

I 4.1 1.47 

C:(f .D:-::::> Sections: I I I 5.0 1.50 Extremely abrupt stall, 
Root: NACA 66,2-118 1 I I left wing stalls first for 

XVI ==--A==- Tip: NACA 66(2x15)-1l6 
1 

38 ------- -------
1 

------- 2.9 2.01 the extensible slotted 
. )::=='" A=6.9 4.0 2.15 flap, satisfactory for split 

Geometric washout, 2.00 I I I 4.9 2.21 flap 

1 I 1 4.9 '2.29 
Split 45 ------- .J. ------- ------- 4.9 'I. 98 

----------

Sections: 
Root: NACA 65 (216)-215, 

~---==; p-~ 
a=0.8 

Tip: NACA 65(216)-215, Double Double 0 0 25 25 61; 31 3.6X1Q6 1.38 
XVII -=Q== a=0.5 slotted slotted 55 .J. 1 1 1 1 3.1 2.45 Satisfactory 

A=9.08 .1- .J. .J. 25 2.8 2.69 
>'=0.45 
Geometric washout, 1.00 

0.2 chord line straight 

~ --------
Sections: 

Root: NACA 65 (216)-215, 

~~ 
a=0.8 

Tip: NACA 65(216)-215, Double Double 0 0 25 25 65 31 3.6X106 1.37 
XVIII -=Q=. a=0.5 slotted slotted 55 .J. 1 I 1 1 3.1 2.44 Satisfactory 

A=9.08 .1- .J. .J. 25 .J. 2.8 2.76 
>'=0.45 I 

Geometric washout, 1.00 

I 
-0.10 chord line straight 

.------

~ 
~ 

l:d 
t::l 
'tJ o 
~ 
Z 
? 
00 .,.. 
II>-

~ 
> 
>-3 
t-< 
o 
Z 
> 
t"' 
> 
~ 
rJl o 
~ 
c o 
~ 
~ 
t-< 

~ 
t::l 
t::l 
"'! 
g 
> 
t::l 
!:O o 
z: g; 
>-3 
t-< 
C 
rJl 



XIX ~ -w-

Sections: 
Root: NACA 65(216)-215, 

a =0.8 
Tip: NACA 65(216)-215, 

a=0.5 
A =9.08 
).=0.45 
Geometric washout, 1.00 

1.1 chord line straight 

Donble 
slotted 

.l-

DOUble 
slotted 

,J.. 

o 
55 
.l-

o 
.l-
25 

25 25 65 

1 1 1 
31 

1 
3.6X106 

3.1 
2.S 

1. 45 1 UnsatisfactorY, severe tip 
2.57 stall for all conditions 
2. 86 except full-span flap 

---I ~ 1 __ 1 ___ 1 __ 1 __ 1 __ 1 1--1-------

XX 10:- ---
~ 

Sections: 
Root: NACA 65(216)-215, 

a=O.S 
Tip: NACA 65(216)-215, 

a=0.5 
A=9.08 
),=0.45 
Geometric washout, 1.00 

0.20 chord line straight 

Double 
slotted 

.l-

Double 
slott!,d 

,J.. 

o 
55 
,J.. 

o 
.~ 

25 25 65 

1 1 1 
31 

1 
.l-

5.5X106 

5.5 
5.5 

1.45 
2. 37 1 Satisfactory 
2.6.'\ 

'---I 1-· -1--1--1--1--1 1--1--____ _ 

II 

XXI ~ '==:::::!-~ 

Sections: 
Root: NACA 66,2-11S 
Tip: NACA 66(2x15)-1l6 
A=6.25 
1<=0.35 
Geometric washout, 2.50 

0.375 chord line straight 

None None 

T 
j 

Split 

45 

60 

1 
::::::-: I 

I 
60 ,j, 20 

50 
1 

j 
40 

2.9X106 

4.0 
4.9 

3.0 
4.0 
4.9 

3.0 
4.3 
5.1 

5.2 
---, 1--1--1--1--1--1--11---

p 

XXII ~ 
$ 

-== ±-
Sections: 

Root: NACA 66,2-11S 
Tip: NACA 66(2x15)-1l6 
A=6.25 
1<=0.35 
Geometric washout, 2. 50 
0.375 chord line straight 

None None 

Split i 45 1_ ... __ -1 20 '- _____ -1 50 

4.1XlO' 
4.9 

4.1 

---, 1-----1--1--1--1--1--1--11---
CJ 

XXIII ~ ~== 
$ 

Sections: 
Root: NACA 66,2-118 
Tip: NACA 66(2xI5)-116 
A=6.25 
).=0.35 
Geometric washout, 2.50 

0.375 chord line swept for· 
ward3.5° 

None None 

Split 1 45 1 ______ -1 20 . ______ , 50 

2.9XlO' 
4.1 
4.9 

2.9 
4.1 
5.0 

/---/ 1--1--1--1--1--1--1---
c. 

XXIV ~\~ 
~ 

Sections: 
Root: NACA 66,2-118 
Tip: NACA 66(2x15)-1l6 
A=6.1 
1<=0.47 
Geometric washout, 2. 5° 
0.375 chord line straight 

None 

Split 

None 

1 45 20 . ______ , 50 

2.9X10· 
4.2 
5.0 

3.0 
4.2 
5.1 

---I 1---1 1--1--1--1-_1, __ _ 

1L9l0 iE:LJ:t 
XXV ~ .--.~.- ~ 

• Fillets removed. 

Sections: 
Root: N ACA 65(223)-221, 

a=1.0 
Tip: NACA 66(215)-316, 

a=0.6 
A=12.S 
1<=0.33 
Geometric washout, 0.0° 

Fowler 

I 
1 

None o 

1 40 

IS 

I 
1 

63 

1 
1. 5X106 
2.2 
2.8 

1.4 
1.9 
2.7 

1.23 
1.43 
1. 51 

1. 80 

t ~ 1 Satisfactory 

1.90 
2.01 
2.04 

2.43 

1.50 
1.60 

2.02 

1.38 
1.57 
1.61 

Satisfactory 

1. 83 I Satisfactory 
1.99 
2.02 

1.34 
1. 56 
1.63 

1.85 
1.92 
2.0l 

1.17 
1.27 
1.37 

Satisfactory 

Poor, initial stall Occurs 
2.21 I at tips 
2.23 
2.30 

rJ2 
q 
~ 
~ 

~ 
~ 
> .... 
~ o .... 
t:"' 
t:j 

~ 
:> 

t::.l 
--l 



SUMMARY OF AIRFOIL DATA 

SUPPLEMENTARY DATA 

I-BASIC THICKNESS FORMS 

Page 
N A C A 0006 ___________________________________________ ~ _ 70 NACA 64

1
-012 _________________________________________ _ 

N ACA 0008 ____________________________________________ _ 70 N ACA 6~-015 _________________________________________ _ 
N A C A 0009 ____________________________________________ _ 70 NACA 64

3
-018 _______________________________ c _________ _ 

N ACA 0010 ____________________________________________ _ 71 N ACA 64
4
-02L ________________________________________ _ 

N ACA 0012 ____________________________________________ _ 71 N ACA 65,2-016 _________________________________________ _ 
NACA 0015 ____________________________________________ _ 71 N ACA 65,2-02L _______________________________________ _ 
N ACA 001.8- ___________________________________________ _ 72 N ACA 65,3-018 _________________________________________ _ 
N ACA 0021 ____________________________________________ _ 72 N ACA 65-006 ________________ . ________________ .. ________ _ 
N ACA 0024 ____________________________________________ _ 72 N ACA 65-008 __________________________________________ _ 
NACA 16-006 ____ - ______________ - - ____ - - _ - - - - - _ - - - _ - _ - -- 73 N ACA 65-009 __________________________________________ _ 
NACA 16-009 __________________________________________ _ 73 NACA 65-010 __________________________________________ _ 
N ACA 16-012 ____ - _____________________________________ _ 73 NACA 65

1
-012 _________________________________________ _ 

NACA 16-015 __________ - __ - - -" _ - - - _ - - - -- - - - - - - - - - - - - - - -- 74 NACA 652-015 _________________________________________ _ 
N ACA 16-018 __________________________________________ _ 74 N ACA 65

3
-018 _______________________________________ - __ 

N ACA 16-021- ________________________ - - _ - _ - - ___ - - - - _ - -- 74 N A C A 65c02 L ________________________________________ _ 
N ACA 63,4-020 _________________________________________ _ 75 N ACA 66,1-012-- _______________________________________ _ 

NACA 63-006 ____ - _______ - - _ - - _ - - - _ - _ - - - - - - - - - - - - - - - - - -- 75 N ACA 66,2--015--___________ - - ____ - ____ - - ___ - - __________ _ 
NACA 63-009 __________________________________________ _ 75 N ACA 66,2-01L _____________________ . __________________ _ 
N ACA 63-010 __________________________________________ _ 76 NACA 66-006 __________________________________________ _ 
N ACA 631-012 _____________________________ - - __ - _____ - -- 76 N ACA 66-008 __________________________________________ _ 
N ACA 632-015 _________________________________________ _ 76 N A C A 66-009 __________________________________________ _ 
N ACA 633-018 _________________ - _ - _ - _ - - - _ - _ - - - - - - - - - - - -- 77 N ACA 66-010_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ ___________ _ 
N ACA 63c 021 ____________ - _ - __ - - - _ - _ - - - _ - _ - - - - - - - ___ - -- 77 N ACA 66

1
-012 _________________________________________ _ 

N ACA 64,2-015 _________________ - ________ . ___ - ____ - - ___ -_ 77 N ACA 66
2
-015 _____________________________ - - __ - _ - - __ - __ 

N ACA 64-006 _____________ - _ - ___ - __ - __ - - _ - - - - __ - - -'. - - - -- 78 N A C A 66
3
-018 _________________________________________ _ 

NACA 64-008 _______________ - ______________ - - ___ " _ - __ - -- 78 NACA 66c 02L ____________________________ - ___ - _ - - __ - __ 
NA'CA 64-009 ______ . _________________________ - _____ - __ - -- 78 N A C A 67,1-01 L _______________________________________ _ 
NACA 64-010 .. ____________________________________ - __ - __ 79 NACA 747 AOI5 _________________________________ - _ - - ____ _ 
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70 REPORT NO. 824--NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

2.0 

NACA 0006 BASIC THICKNESS FORM 

1.6 
X 11 (DIV)' vlV I AD./V (percent c) (percent c) 

0 0 0 0 3.992 
.li ----.-947--- .880 .938 2.015 

1.25 1.117 1.057 1.364 
2.5 1.307 1.186 1.089 .984 

(-r;)' 
- :---r--- I--::---

~ 

5.0 1.777 1..217 1.103 .696 
7.5 2.100 1. 225 1.107 .562 

10 2.341 1.212 1.101 .478 
15 2.673 1. 206 1.098 .378 
20 2.869 1.190 1. 091 .316 
25 2.971 1.179 1.086 .272 
30 3.001 1.162 1.078 .239 
40 2.902 1.136 1.066 .189 
50 2.647 1.109 1.053 .162 

1.2 

.8 
60 2.282 1.086 1.042 .123 
70 1.832 1. 057 1.028 .097 

NACA 0006 
80 1.312 1. 026 1.013 .073 
90 .724 .980 .990 .047 
95 .403 .949 .974 .032 

100 .063 0 0 0 
.4 

L. E. radius: 0.40 percent c 

r---

o 

NACA 0008 BASIC THlOK;);ESS FORM 

1.6 x 11 (vi V)' vlV d"./F (percent 0) (percent 0) 
---

0 0 0 0 2.900 

I' r--
I --~ r--I--

.5 ---i:263--- .792 .890 1. 795 
1.25 1.103 1. 050 1.310 
2.5 1.743 1.221 1.105 .971 
5.0 2.369 1.272 1.128 .694 
7.5 2.800 1.284 1.133 .561 

10 3.121 1. 277 1.130 .479 
15 3.564 1.272 1.128 .379 

1.2 -, 20 3.825 1. 259 1.122 .318 
25 3.961 1. 241 1.114 .273 
30 4.001 1.223 1.106 .239 
40 3.869 1.186 1.089 .188 
50 3.529 1.149 1. 072 .152 

.8 
60 3.043 1.111 1.054 .121 

NACA 0008 
70 2.443 1.080 1. 039 .096 
80 1.749 1.034 1.017 .071 
90 .965 .968 .984 .017 
95 .537 .939 .969 .031 

.4 100 .084 ... -------- -------.-.- 0 

V- L. E. radius: 0.70 percent c 

I'-.. .-

o 

NACA 0009 BASIC THlCKXESS FORM 

1.6 x y (t>fV)' vlV Av.IV (percent c) (percent c) 
--------------

0 0 0 0 0.595 

( ---- ~ r--:---t--

.5 --T42Q--- .750 .866 1. 700 
1. 25 1.083 1.041 1.283 
2.5 1. 961 1.229 1.109 .963 
5.0 2.666 1. 299 1.140 .692 
7.5 3.150 1. 310 1.145 .560 

10 3.512 '1. 309 1.144 .479 

1.2 

'\ 
\ 

NACA 0009 

15 4.009 1. 304 1.142 .380 
20 4.303 1. 293 1.137 .318 
25 4.456 1.275 1.129 .273 
30 4.501 1.252 1.119 .239 
40 4.352 1.209 1.100 .188 
50 3.971 1.170 1.082 .151 
60 3.423 1.126 1.061 .120 . 
70 2.748 1.087 1.043 .095 

.8 

80 1. 967 1.037 1.018 .070 
90 1.086 .984 .982 .046 
95 .605 .933 .966 .030 

100 .095 0 0 0 .4 

V-
I'---

L. E. radius: 0.89 percent c 

o .6 1.0 



2.0 

('I))' ;\7 

(ilt 

1.6 

.8 

.4 

o 

1.6 

1.2 

.8 

.4 

o 

1.6 

I.~ 

.8 

o 

( 

V-
I'---

( 

,,---
r'--

/ 
I 

V -
"---

r--r-- -- ---r---

NACA 0010 

---r--~ ...... r---

NACA 0012 

--r-...... 
~ r--...... 

~ 

NAtA 0015 

.2 
.:rIc 

.6 

SUMMARY OF AIRFOIL DATA. 71 

NACA 0010 BASIC THICKNESS FORM 

--
x (per~nt c) 

(v/V)2 v/V I:1v.jV (percent c) 

0 0 0 0 2.372 
.5 

~----------
.712 .844 1.618 

1.25 1. 578 1.061 1.0ao 1. 255 
2.5 2.178 1. 237 1.112 .955 
5.0 2.962 1.325 1.151 .690 
7.5 3.500 1. 341 1.158 .559 

10 3.902 1.341 1.158 .479 -- ...... 15 4.455 1.341 1.158 .380 
20 4.782 1. 329 1.153 .318 

........ 

'\ 
\ 

25 4.952 1. 309 1.144 .273 
30 5·002 1.284 1.133 .239 
40 4.837 1. 237 1.112 .188 
50 4.412 1.190 1.091 .150 
60 3.803 1.138 1.067 .119 
70 3.053 1.094 1.046 .094 
80 2.187 1.040 1.020 .069 
90 1.207 .960 .980 .045 
95 .672 .925 .962 .030 

100 .105 ----------- ----------- 0 

L. E. radius: 1.10 percent c 

NACA 0012 BASIC THICKNESS FORM 

x 
(perc~nt c) (vi V)' vlV I:1v.IV (percent c) 

-----
0 0 0 0 1.988 
.5 ---i:S94--- .640 .800 1.475 

1.25 1. 010 1.005 1.199 
2.5 2.615 1. 241 1.114 .934 
5.0 3.555 1. 378 1.174 .685 

r-- 7.5 4.200 1. 402 1.184 .558 
10 4.683. 1.411 1.188 .479 
15 5.345 1.411 1.188 .381 

......... 

1\ 
20 5.737 1. 399 1.183 .319 
25 5.941 1. 378 1.174 .273 
30 6.002 1. 350 1.162 .~9 
40 5.803 1.288 1.135 .187 
50 5.294 1.228 1.108 .149 
60 4.563 1.166 1.080 .118 
70 3.664 1.109 1. 053 .092 
80 2.623 1.044 1.022 .068 
90 1.448 .956 .978 .044 
95 .807 .906 .952 .029 

100 .126 0 0 0 

c--=:-- . L. E. radius: 1.58 percent c 

NACA 0015 BASIC THICKNESS FORM 

x u (vIV) , vlV I:1v.IV (percent c) (percent c) 
----

~ 
......... 

0 0 0 0 1.600 
.5 ---2:367--- .546 .739 1.312 

1.25 .933 .966 1.112 
2.5· 3.268 1. 237 1.112 .900 
5.0 4.443 1.450 1.204 .675 
7.5 5.250 1.498 1. 224 .557 

10 5.853 1. 520 1. 233 .479 

'1\ 
\ 

15 6.682 1. 520 1.233 .381 
20 7.172 1.510 1. 229 .320 
25 7.427 1.484 1.218 .274 
30 7.502 1. 450 1.204 .239 
40 7.254 1. 369 1.170 .185 
50 6.617 1. 279 1.131 .146 
60 5.704 1. 206 1.098 .115 
70 4.580 1.132 1.064 .090 
80 3.279 1.049 1.024 .065 
90 1. 810 .945 .972 .041 
95 1. 008 .872 .934 .027 

100 .158 0 0 0 - r----- I 

L. E. radius: 2.48 percent c 

.8 /.0 
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2.0 

NACA 0018 BASIC THICKNESS FORM 

1.6 c---:-

( -..... 
~ 

, 

'" I ""-
~ t--- -..... 

~ i 
I"--.. ! 

1.2 

.~ y 
(v/VP I v/v I flv.iF (percent 0) (percent 0) 

------------- .. --
0 0 0 0 1.342 
.5 ----------- .465 .682 1.178 

1.25 2.841 .857 .926 1.028 
2.5 3.922. 1. 217 1. 103 .86l 
5.0 5.332 1. 507 1.228 .662 
7.5 6.300 1. 598 1. 264 .55fi 

10 7.024 1.628 1.276 .4i9 
15 8.018 1. 633 1. 278 .381 
20 8.606 1. 625 1. 275 .320 

""'" 1\ 
\' 

.8 

25 8.912 1. 592 1. 262 .274 
30 9.003 1. 556 1. 247 .238 
40 8.705 1.453 1. 205 .184 
50 7.941 1.331 1. 15·i .144 
60 6.845 1. 246 1.116 .113 
70 5.496 1.153 1. 074 .087 

NACA 0018 
80 3.935 1. 051 1. 025 .063 
90 2.172 .933 .966 .039 
95 1.210 .836 .914 .025 

100 .189 0 0 0 

:/ ,..-- ;---t-- i 

r--t---t-- : 

.4 
L. E. radius: 3.56 percent c 

"'-- r----l--
i-'-' 

r-- I--------
o 

-
J I ~ 

""'" I """ ~ 
I , 
I 

~ 
~ 

I 

~ 
'" 

/.6 

1.2 

NACA 0021 BASIC THICKNESS FORM 

x 11 (vIF)' v/V 1l.v(dV' (percent c) (percent c) 

0 0 0 0 1.167 
.5 .. _--------- .397 .630 1. 065 

1.25 3.315 .787 .887 .946 
2.5 4.576 1.182 1. 087 .818 
5 6.221 1. 543 1. 242 .648 
7.5 7.350 1.682 1. 297 .550 

10 8.195 1. 734 1. 317 .478 
15 9.354 1. 756 1.325 .381 

"" 1\ 

NACA 0021 \ 
.8 

20 10.040 1. 742 1. 320 .320 
25 10.397 1. 706 1. 306 .274 
30 10.504 1.664 1.290 .2.~8 
40 10 . .156 1..538 1. 240 .183 
.10 9.265 1. 388 1.178 .142 
60 7.986 1. 284 1. 133 .111 
70 6.412 1.177 1.085 .084 
80 4.591 1. 055 1. 027 .061 
90 2.534 .916 .957 .037 
95 1.412 .801 .895 .023 

'/ - - t-- '---- ; --r--

.4 
100 .221 0 0 0 

L. E. radius: 4.85 percent c 

~ --e----
!--l--o 

~ -........ 

( ~i 

I ~r---
/.6 

NACA 0024 BASIC THICKNESS FORM 

x y (V/V)2 

I 
v/V fll'./V (percent c) (percent c) 

----
J ""-

~ -' 
, 

~ 
, 
! 

1.2 

0 0 0 0 1. 050 
.5 ________ w __ .335 .579 .964 

1. 25 3.788 .719 .848 .870 
2.5 5.229 1.130 1. 063 .771 
5.0 7.109 1.548 1. 244 . 6.~2 
7.5 8.400 1. 748 1.322 . .142 

r--... 

'" ~ 
NACA OON \ 

\ I 

.8 

10 9.365 1. 833 1. 354 .470 
15 10.691 1.88S 1. 374 .383 
20 11.475 1.871 1. 368 .321 
25 11.883 1. 822 1. 350 .274 
30 12.004 1.777 1. 333 .238 
40 11.607 1. 631 1. 277 .181 
50 10.588 1. 450 1. 204 .140 
60 9.127 1.325 1.151 .109 
70 7.328 1.203 1. 097 .082 
80 5.247 1. 065 1. 032 .059 
90 2.896 .891 .944 .035 
95 1. 613 .773 .879 .022 

1/ - ---'----r--

.4 100 .252 0 0 0 

L. E. radius: 6.33 percent c 

~ ~ ~ 
~ f-.--

.C .'T .6 .8 1.0 o 
zlc 



20 

/. 6 

/. e 

(v)' 
r 

8 

NACA 16-006 

4 

0 

I. 6 

1.2 ,--

.8 

NACA 16-009 

.4 

t...--

---
o 

u; 

-/ 
I.e 

(v)" 
.8 

NACA 16-012 

.4 

---'-......2 

o .2 .4 .6 
.rIc 

SUMMARY OF AIRFOIL DATA 

- -----.. 
\ 
\ 

--~ 
\ 
\ 

- r---
J---

~ 

~ 

\ 
\ 

I------' -
.8 

NACA 16-006 BASIC THICKNESS FORM 

x 1/ (vIF)' vlF (pCrcent c) (percent c) 

0 0 0 0 
1. 25 .646 1.059 1. 029 
2.5 .903 1. 085· 1. 042 
5.0 1. 255 1. 097 1.047 
7.5 1. 516 1.105 1. 051 

10 1.729 1.108 1.053 
15 2.067 1.112 1. 055 
20 2.332 1.116 1.057 
30 2.709 1.123 1.060 
40 2.927 1.132 1. 054 
50 3.000 1.137 1. 066 
60 2.917 1.141 1. 068 
70 2.635 1.132 1. 064 
80 2.099 1.104 1. 051 
90 1. 259 1. 035 1. 017 
05 .707 .962 .981 

100 .060 0 0 

L. E. radius: 0.176 percent c 

NACA 16-009 BASIC THICKNESS FORM 

'V 
(percent c) 

(vi F) , vjF 

Av./F 

5.471 
1. 376 
.980 
.689 
.557 
.476 
.379 
.319 
.244 
.196 
.160 
.130 
.104 
.077 
.049 
.032 

0 

Av./F 1 (perc;nt c) 
1------------1----- -------1------

o 
1. 25 
2.5 
5.0 
7.5 

10 
15 
20 
80 
40 
50 
60 
70 

90 
95 

100 

o 
.969 

1. 354 
1. 882 
2.274 
2.593 

. 3.101 
3.498 
4.063 
4.391 
4.500 
4.376 
3.952 
3.149 
1. 888 
1. 061 
.090 

o 
1. 042 
1.109 
1.139 
1.152 
1.158 
1.168 
1.177 
1.190 
1. 202 
1.211 
1.214 
1. 206 
1.156 
1.043 
.939 

o 

o 
1. 021 
1. 053 
1. 067 
1. 073 
1. 076 
1. 081 
1.085 
1. 091 
1. 096 
1.100 
1.106 
1. 099 
1. 075 
1. 022 

.969 
o 

3.644 
1. 330 

.964 

.684 

.5M 

.475 

.378 

.319 

.245 
,197 
.160 
.131 
.103 
.076 
.047 
.030 

o 
80 I 

---------------------------------- ' 
L. E. radius: 0.3g6-percent c 

NACA 16-012 BASIC THICKNESS FORM 

x 
(percent c) 

o 
1. 25 
2.5 
5.0 
7.5 

10 
15 
20 
30 
40 
50 
60 
70 
80 
90 
95 

100 

y 
(percent c) 

o 
1. 292 
1. 805 
2.509 
3.032 
3.457 
4.135 
4.664 
'5.417 
5.855 
6.000 
5.835 
5.269 
4.199 
2.517 
1. 415 

.120 

(vjF) , 

o 
1.002 
1.109 
1.173 
1.197 
1. 208 
1. 223 
1. 237 
1. 257 
1.271 
1. 286 
1. 293 
1. 275 
1. 203 
1.051 
.908 

o 

vlF 

o 
1.001 
1. 053 
1.083 
1. 094 
1.099 
1.106 
1.112 
1.121 
1.128 
1.134 
1.137 
1.129 
1. 097 
1. 025 

.953 
o 

"-v.iF 

2.624 
1. 268 
.942 
.677 
.1)51 
.473 
.378 
.319 
.245 
.197 
.161 
.131 
.102 
.075 
.045 
.027 

o 
----------' -----..!.----~--.--------

L. E. radius: 0.703 perccnt c 

73 
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'20 

NACA 16-015 BASIC THICKNESS FORM 

/.6 x 11 (vIV)' t'/V tJ.v.IV (percent c) (percent c) 

--' 

(vt 

L.---I--- ~t-.. ./ 

/ '\ 
.-

\ 
'\ 

0 0 0 0 2.041 
1. 25 1. 615 .956 .978 1.209 
2.5 2.257 1.105 1.051 .916 
5.0 3.137 1. 200 1.095 .668 
7.5 3.790 1.239 1.113 .547 

10 4. 322 1. 256 1.121 .471 
15 5.168 1. 278 1.130 .377 
20 5,830 1. 297 1.139 .318 
30 6.772 1. 327 1.152 .245 
40 7.318 1. 349 1,161 .197 
50 7.500 1. 364 1.168 .161 
60 7.293 1.374 1.172 .131 
70 6.587 1. 348 1.161 .102 
80 5.248 1. 254 1.120 .074 

1.2 

.8 

, NACA 16-015 90 3.147 1,053 1. 026 .043 
95 1. 768 .875 ,935 .025 

100 .150 0 0 0 

.4 
L. E. radius: 1.100 percent c 

V-~ r---r-.... 
~ I--. L---V-

o 

NACA 16-018 BASIC THICKNESS FORM 

/.6 
x 11 (v/V) , vlV tJ.v.IV (percent c) (percent c) 

V-
,...-

""" /' ~ 
( \ 

, \ 
NACA 16-018 \ 

0 0 0 0 1. 744 
1. 25 1. 938 .903 .950 1.140 
2.5 2.708 1.09,2 1. 045 .883 
5.0 3.764 1.217 1.103 .657 
7.5 4.548 1.271 1.128 .541 

10 5,186 1. 302 1.141 .468 , 15 6.202 1. 332 1.154 .376 
20 6.996 1. 357 1.165 .318 
30 8.126 1. 399 1.183 .245 
40 8.782 1. 426 1.194 .198 
50 9.000 1,447 1.203 .162 
60 8.752 1. 452 1. 205 .131 
70 7.904 1. 421 1.192 . .102 
80 6.298 1. 306 1.143 .073 
90 3.776 1. 051 1. 025 .042 
95 2.122 .837 .915 .024 lop .180 0 0 0 

/,E 

.8 

.4 

V I-- -1--r--.. 
L. E. radius: 1.584 percent c 

'-- ~ V--
1--- -.I--o 

NACA 16-021 BASIC THICKNESS FORM 
1.6 

!----
I---r- ~ x 11 (o/V) , vlV tJ.v.IV (percent c) (percent c) 

I 
V 

1\ 
7 '\ 

1\ 
NACA 16-0EI \ 

\ 
'" L.--- -v- i--r----... 

0 0 0 0 1. 574 
1.25 2.261 .826 .909 1. 069 
2.5 3.159 1. 062 1. 031 .828 
5,0 4.391 1.221 1.105 .640 
7.5 5.306 1. 295 1.138 .534 

10 6,050 1. 342 1.159 .463 
15 7.236 1. 391 1.179 .374 
20 8.162 1. 419 1.191 .317 
30 9.480 1. 474 1. 214 .245 
40 10.246 1. 506 1.227 .198 
50 10.500 1. 535 1. 239 .162 
60 lO,211 1. 536 1.239 .131 
70 9.221 1. 495 1. 223 .102 

, 80 7.348 1. 361 1.166 .072 
90 4.405 1.039 1.019 .041 
95 2.476 .801 .895 .023 

100 .210 0 0 0 

L. E. radius: 2.156 percent c 

1.2 

.8 

f"-- !---V r-- I- 1---: 
.2 .4 

~/c 
.6 .8 1.0 



SUMMARY OF AIRFOIL DATA 75 
2. NACA 63,4-020 BASIC THICKNESS FORM 
.0 

~ I I I I 
•••• .c. ".44 (upper surface) x 1/ (VfV)2 vfV Av.IV (percent c) (percent c) 

I.B V ~ ~ 
Va ~ ~ 

I V -.;;;;: 

~"" ~ / 

.2 I V- -;44 fower surface) ~ ~ 
/ -.......:: 

~ 
.8 

/ " AI/ 
NAOA 63,4-020 

V I-- - t----r--r--

0 0 0 0 1.395 
.5 1. 714 .444 .666' 1.280 
.75 2.081 .605 .778 1.201 

1.25 2.638 .820 .906 1. 072 
·2.5 3.606 1.080 1.039 .846 
5.0 4.947 1. 277 1.130 .645 
7.5 5.964 1. 383 1.176 .543 

10 6.800 1. 456 1.207 .475 
15 8.090 1.551 1.245 .386 
20 9.006 1. 614 1.270 .330 
25 9.630' 1. 659 1.288 .289· 
30 9.955 1. 689 1. 300 .257 
35 9.978 1.630 1. 277 .219 
40 9.765 1.567 1.252 .192 
45 9.366 1.500 1. 225 .169. 
50 8.819 1.433 1.197 .148 
55 8.143 1. 362 1.167 .128 
60 7.351 1. 288 1.135 •• 112 
65 6.464 1. 213 1.101 .097 
70 5.496 1.137 1. 066 .084 
75 4.466 1. 059 1.029 .071 
80 3.401 .978 .989 .059 
85 2.342 .896 .947 ;046 
90 1.348 .811 

, .901 .036 
95 .501 .728 .853 .023 

100 0 .651 .807 O· 

'-- ~ 
~ 

o r-- L---~ 

L. E. radius: 3.16 percent c 

NACA63-006 BASIC THICKNESS FORM 

x (per~nt c) (vi V) , .IV A •• IV 
(percent c) 

I .0 

,,0 _.cz =.03 (upper surface) 

2 
I ~-, " 

ff?' 
["" I 

-:03 (lower surface) ~ roo-
.......... r---. 

B 

NACA 63-006 

4 

i..--

I. 

0 0 0 0 4.483 
.5 .503 .973 .986 2.110 
.75 .609 1.050 1.025 1.778 

1. 25 .771 1. 080 1.039 1. 399 
2.5 1.057 1.110 1.054 .981 
5 1 .. 462 1.130 1. 063 .692 
7.5 1.766 1.142 1.069 .562 

10 2.010 1.149 1.072 .484 
15 2.386 1.159 1.077 .384 

·20 2.656 1.165 1. 079 .321 
25 2.841 '1.170 1.082 .279 
30 '2.954 1.174 1.084 .245 .. 

35 3.000 1.170 1.082 .218 
40 2.971 1.164 1.079 .196 
45 2.877 1.151 1.073 .176 
50 2.723 1.137 1.066 .158 
55 2.517 1.118 1.·057 .141 
60 2.267 1.096 1.047 .125 
65 1.982 1. 074 1.036 .111 
70 1.670 1.046 1. 023 .098 
75 1. 342 1.020 1.010 .085 
80 1. 008 .. 994 .997 .073 
85 .683 .965 .982 .060 
90 .383 .936. .967 .047 
95 .138 .910 .954 .032 

109 0 .886 .941 0 

...;;;;.: 

L. E. radius: 0.297 percent c 

0 

NACA 63-009 BASIC T1HCKNESS FORM 

1.6 

x (perc~nt c) (·fV)' vlV Av.IV 
(percent c) 

",,,, ... 
c, =.08 (upper surface) 

, , 

1 0 ... - ~ 

'I;< V -..;;::: 
~ ---.08 (lower. surface). ~ 

I "'-"" 
NACA 8:1"'009 

I..---: 
~ 

1.2 

(vt 
.8 

.4 

0 0 0 0 3:058 
.5 .749 .885 .941 1. 889 
.75 .906 1.002 1.001 1.647 

1.25 1.151 1.051 1. 025 .1.339 
2.5 1.582 1.130 1.063 .961 
5 2.196 1.180 1.086 .689 
7.5 2.655 1.205 1.098 .560 . 

10 3.024 1. 221 1.105 .484 
15 3.591 1. 241 1.114 .386 
20 3.997 1.255 1.120 .324 

25 4.275 1.264 1.124 .281 
30 4.442 1.269 1.126 .248 
35 4:500 1. 265 1.125 .220 

40 4.447 1. 255 1.120 .196 
45 4.296 1.235 1.111 .175 

50 4.056 1.208 1.099 .156 
55 3.739 1.175 1.084 .140 
60 3.358 1.141 1.068 .124 

65 2.928 1.104 1.051 .109 
70 2.458 1.065 1.032 .095 
75 '1.966 1.025 1.012 .082 

80 1.471 .984 :992 .069 
85 .990 .942 .971 .057 

90 .550 .903 .950. .044 

95 .196 .868 .932 .• 030' 

100 0 .838 .915 0 

o .2 .4 .6 .8 /.0 
. L. ,E. radius: 0.631 percent c 

.¥<Ic 
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NACA 63-010 BASIC THICKNESS FORM 

2.1 .. 6°= ~[TII 
,- L.) .. ~j- .--~ .. -.-----.-

----- I-- .. --. --

/' .c, =.10 (upper surface) 

z '1/ (VIV)2 vfV I "'v.IV (percent c) (peJ'cent c) 
--------------------- ------' 

0 0 0 0 2.775 
.5 .829 .841 .917 1. 825 
.75 1.004 .978 .989 1. 603 

1. 25 1. 275 1. 037 1.018 1.316 
2.5 1. 756 1.131 1.063 .952 

, 

2 1(°'>-- --~::::::::..... 
I. '(/.~-.!o 10wer surfacel--":::::::::~~· --.-------... -

~t •. /)' I I' ) ~ 
\~- 1/ ~-~L- ~r' ~~ 

8 r - I 

1---+-----1----1--- NACA 83-010··-+---1---1----1 

I .4r--+~4--~_4--!~_+-~-~_+-~ 

5.0 2.440 1.193 1.092 .687 
7.5 2.950 1.223 1.10() .500 

10 3.362 1.245 1.116 .484 
15 3.994 1. 270 1.127 .386 
20 4.445 1. 285 1.13~ .325 
25 4.753 1. 295 1. 138 .2S2 
30 4.938 1.302 1.141 .218 
35 5.000 1. 299 1.140 .220 
40 4.938 1. 286 1.134 .196 
45 4.7GG 1.2G2 1.123 .175 
50 4.496 1. 231 1.110 .156 
55 4.140 1.193 1.092 .139 
60 3.715 1.154 1. 074 .123 
65 3.234 1.113 1.055 .108 
70 2.712 1. 069 1.034 .094 
75 2.166 1. 025 1. 012 .081 
80 1. 618 .979 .989 .069 
85 1.088 .935 .967 .056 
90 .604 .893 .945 .043 
95 .214 .853 .924 .030 

100 0 .822 .907 0 

L. E. radius: 0.770 percent c 

Or-~--_+---L·-~---L--~--~--+_--~~ 
NACA 63,-012 BASIC THICKNESS FORM 

Z '1/ (VIV)2 vfV I ",v.IV 
(percent c) (percent c) 

-.---. 
I.B 

_--------C', :./4 (upper surface) -
0/ V- -t3::=: 

~ --- --- ---= U? 

1/ K:', surface)-........:::~ 
(vl 

"-.14 fower ~ 
1/ --..:::: , 

.......... 
.8 

NACA 63,-012 

.4 

r.--- -r'--

0 0 0 0 2.336 
.5 .985 .750 .866 1.695 
.75 1.194 .925 .962 1. 513 

1. 25 1.519 1.005 1.003 1. 266 
2.5 2.102 1.129 1.063 .933 
5 2.925 1. 217 1.103 .682 
7.5 3.542 1. 261 1.123 .559 

10 4.039 1. 294 1.138 .484 
15 4.799 1.330 1.153 .387 
20 5.342 1. 349 1.161 .326 
25 5.712 1. 362 1.167 .283 
30 5.930 1.370 1.170 .249 
35 6.000 1. 366 1.169 .221 
40 5.920 1. 348 1.161 .195 
45 5.704 1. 317 1.148 .174 
50 5.370 1. 276 1.130 .155 
55 4.935 1. 229 1.109 .137 
60 4.420 1.181 1.087 .121 
65 3.840 1.131 1.063 .106 
70 3.210 1.076 1.037 .091 
75 2.556 1. 023 1. 011 .079 
80 1. 902 .969 .984 .067 
85 1. 274 .920 .959 .055 
90 .707 .871 .933 .042 
95 .250 .826 .909 .029 

100 0 .791 .889 0 

'--'--- - I--- -------------~----------------

L. E. radius: 1.087 percent c 

0 

NACA 632-015 BASIC THICKNESS FORM 

-__ .c, =.22 (upper surfaoe) 

/.8 
f ......... 

._._-

0 ......-- ..-- --. 
-- 1----.. . -'---.-

I ---------r-=:~ 
1.2 / -_.-. ~ ~ 

(vi i/ /---.22 fower surface) ~ ~ 

I ~ 
~ 

.8 '&. 
......... 

--1----1--
.4 

/-~ 

'-r-.. 

! 
1 

x 'II (V/V)2 vlV I ",v.IV 
(percent c) (percent c) 

0 0 0 0 1. 918 
. 5 1.204 · 600 · 775 1. 513 
. 75 1. 462 · 822 · 907 1. 379 

1. 25 1. 878 · 938 · 969 1.182 
2.5 2.610 1.105 1. 051 .903 
5 3.648 1. 244 1.115 .674 
7.5 4.427 1. 315 1.147 .557 

10 5.055 1.360 1.166 .484 
15 6.011 1.415 1.190 .388 
20 6.693 1. 446 1.202 .330 
25 7.155 1.467 1.211 .286 
30 7.421 1. 481 1. 217 .251 
35 7.5CO 1.475 1. 214 .222 
40 7.386 1. 446 1. 202 .196 
45 7.099 1.401 1.184 .174 
50 6.665 1. 345 1.160 .153 
55 6.108 1.281 1.132 .135 
60 5.453 1. 220 1.105 .118 
65 4.721 1.155 1.075 .102 
70 3.934 1.0.85 1.042 .088 
75 3.119 1.019 1.009 .076 
80 2.310 .953 .976 .063 
85 1. 541 .894 .946 .051 
90 .852 .839 .916 .039 
95 .300 .789 .888 

I 
.026 

100 0 .750 .866 0 

L. E. radius: 1.594 percent c 
0 .2 .4 .8 .8 1.0 

.rIc 
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2.0 NACA 633-018 BASIC THICKNESS FORM 

/,c, ~.32 (upper surfaco) 
, 

1.6 
( ~ 

"" V 
...-- -........ 

~ C( 

"" 
(~r 

I / 
/' ~ ~ ~ 

I / V'" '.32 dower surrace) ~ ~ 
I ~ ~ 
I " 
I 

NACA 63.-018 

1.2 

.8 

.4 

V f.-- - r--t---- r--
,~ I--- -

t-- - l..---

/ ~ 
o 

(v) 

I ~ ,,"\ I 

~ /c, = .38 (upper surface) 

a V .-- "" ~ ''/ ./ .......... 

I V '" ~ ~ / 
I II'" -.38 dower surface) ~ ~ 
/ ~ ~ 
I 

,-

~ 

I 
NACA 634 -021 

V V- ---::: --~ r---

1.6 

1.2 

.8 

.4 

~ I--- j..--

t---.. L.---~ o 

__ c z =.20 (upper surface) 
, , 

-~ ~~ 
1.0 

/ ~ V ~ ~ ~ / ~ 

/ / /'" -.20 fower surface) ~ ~ I 

I ~ 
" I '" 

1.2 

.8 

NACA 64,2-015 

.4 

V-- - - :--

'-- l---- ~ -
o .2 .4 .8 .8 1.0 

x 

I 
y 

I 
(vfV) , 

I vfV 
I 

tl.v./V (percent c) (percent c) 
------

0 0 0 0 1.639 
.5 1. 404 .441 .664 1. 361 
.75 1. 713 .700 .837 1. 258 

1. 25 2.217 .848 .921 1.105 
2.5 3.104 1. 065 1. 032 .871 
5 4.362 1. 260 1.122 .663 
7.5 5.308 1.360 1.166 .553 

10 6.068 1. 424 1.193 .484 
15 7.225 1. 500 1. 225 .390 
20 8.048 1. 547 1. 244 .333 
25 8.600 1. 579 1. 257 .289 
30 8.913 1. 598 1. 264 .253 
35 9.000 1. 585 1. 259 .223 
40 8. 845 1. 550 1. 245 .197 
45 8.482 1. 490 1. 221 .173 
50 7.942 1.411 1.188 .152 
55 7.256 1.330 1.153 .133 
60 6.455 1. 252 1.119 .115 
65 5.567 1.170 1. 082 .099 
70 4.622 1. 087 1.043 .084 
75 3.650 1. 009 1.004 .072 
80 2.691 .933 .966 .059 
85 1. 787 .868 .932 .048 
90 .985 .807 .898 .036 
95 .348 .753 .868 .024 

100 0 .712 .844 0 

L. E. radius: 2.120 percent c 

NACA 63,-021 BASIC THICKNESS FORM 

x 
(percent c) 

o 
.5 
.75 

1. 25 
2.5 
5 
7.5 

10 
15 
20 
25 
30 
35 
40 
45 
no 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 

y 
(percent c) 

o 
1. 583 
1. 937 
2.527 
3.577 
5.065 
6.182 
7.080 
8.441 
9.410 

10.053 
10.412 
10.500 
10.298 
9.854 
9.206 
8.390 
7.441 
6.396 
5.290 
4.160 
3.054 
2.021 
1.113 

.392 
o 

L. E. radiu.: 2.650 percent c 

(II/V)' 

o 
.275 
.564 
.725 

1.010 
1. 260 
1.394 
1. 487 
1. 592 
1.655 
1.698 
1. 721 
1. 709 
1.654 
1. 578 
1.479 
1.380 
1. 281 
1.180 
1.084 

.994 

.911 

.839 

.774 

.721 

.676 

v/V 

o 
.524 
.751 
.851 

1.005 
1.122 
1.181 
1. 219 
1. 262 
1. 286 
1.303 
1. 312 
1.307 
1. 286 
1. 256 
1. 216 
1.175 
1.1~2 

1.086 
1. 041 

.997 

.954 

.916 

.880 

.849 

.822 

d •• /V 

1. 439 
1. 236 
1.156 
1.034 

o 

.842 

.653 

.550 

.484 

.392 

.335 

.291 

.255 

.225 

.198 

.173 

.150 

.130 

.1l2 

.096 

.081 

.068 

.057 

.046 

.035 

.023 

NACA 64,2-015 BASIC THICKNESS FORM 

x I y (v/l')' v/v tlv./v . (percent c) (percent c) 
----- --------- -------- ------ -------

0 0 0 0 1. 930 
.5 1.216 .710 .843 1500 
.75 1.453 .825 .908 1. 359 

1. 25 1. ~29 .962 .981 1.161 
2.5 2_ 538 1. 122 1.059 .911 
5.0 3.514 1. 234 1.111 .678 
7.5 4.243 1. 288 1.135 .553 

10 4.838 1. 323 1. 150 .477 
15 5.781 1.371 1.171 .383 
20 6.464 1.401 1.184 .325 
25 6.967 1. 422 1.192 .285 
30 7.307 .. 1. 441 1. 200 .253 
35 7.481 1. 458 1. 207 .227 
40 7.480 1.471 I. 213 .202 
45 7.268 1.432 1.197 .175 
50 6.850 1. 366 1.169 .156 
55 6.311 1. 299 1.140 ; 137 
60 5.670 1. 234 1.111 .122 
65 4.944 1.16R 1. 081 .102 
70 4.158 1.102 1.050 .086 
75 3.338 1·039 1.019 .080 
80 2.506 .973 .986 .071 
85 1. 698 .910 .g54 .056 
90 .961 .849 .921 .039 
95 .351 .791 .889 .027 

. 100 0 .739 .860 0 

L. E. radius: 1.65 percent c 
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20 NACA 64-006 BASIC THICKNESS FORM 

x 
(pertent c) 

(ofV) , ofV t;.o./V (percent c) 

1.6 
0 0 0 0 4.623 
.5 .494 .995 .997 2.175 
.75 .596 1.058 1.029 1. 780 

1.25 .754 1.085 1.042 1.418 
2.5 1.024 1.108 1.053 .982 
5.0 1.405 1.119 1. 058 .692 

(ill 

,,0 
.' .. --- (:, ... 02 (upper surface) .. , 

I ~ 

V ...... ~ .. ----.02 (lower surrace) --- --r--. 

1.2 

.8 

7.5 1.692 1.128 1.062 .560 
10 1. 928 1.134 1.065 .483 
15 2.298 1.146 1.071 .385 
20 2.572 1.154 1. 074 .321 
25 2.772 1.160 1.077 .279 
30 2.907 1.164 1. 079 .246 
35 2,981 1.168 1.081 .220 
40 2.995 1.171 1.082 .198 
45 2.919 1.160 1.077 .178 
50 2.775 1.143 1. 069 .158 
55 2.575 1.124 1.060 .142 

'50 2.331 1.102 1. 050 .126 
65 2.050 1.079 1.039 .112 

NACA 84-008 70 1.740 1.0M 1.027 .098 
75 1. 412 1.028 1. 014 .085 
80 1.072 1.000 1.000 .072 
85 .737 .970 .985 .060 

.4 90 .423 .939 .969 .047 
95 .157 .908 .953 .031 

100 0 .876 .936 0 

L. E. radius: 0.256 percent c 

o 
NACA 64-008 BASIC THICKNESS FORM 

x 11 (vfV) , v/V t;.o./V (percent c) (percent c) 

1.6 
0 0 0 0 3.M4 

.. - ~-
____ c, :.04 (upper surface) .5 .658 .912 .955 1. 994 

.75 .794 1. 016 1. 008 1. 686 
1. 25 1. 005 1.084 1. 041 1. 367 
2.5 1. 365 1.127 1.062 .969 

, .0 ; 

f? ~ ~ 
~ -----.04 {ower surface 
~ 

12 
5.0 1.875 1.152 1.073 .688 
7.5 ,2.259 1.167 1~ 080 .560 

10 2.574 1.179 1.086 .480 
15 3.069 1.195 1. 093 .385 
20 3.437 1. 208 1. 099 .323 
25 3.704 1. 217 1.103 .279 

~ ............ 
.8 

30 3.884 1. 225 1.107 .246 
35 3.979 1.230 1.109 .220 
40 3.992 1. 235 1. 111' .198 
45 3.883 1. 220 1.105 .176 
50 3.684 1.191 1. 091 .158 
55 3.411 1.163 1.078 .141 
60 3.081 1.133 1. 064 .125 

NACA 84~OO8 65 2.704 1.102 1. 050 .110 
70 2.291 1.069 1. 034 .096 
75 1.854 1.033 1. 016 .083 

.4 
SO 1.404 .995 .997 .071 
85 .961 .957 .978 .059 
90 ,550 .918 .958 .046 
95 .206 .878 .937 .031 

"........ 100 0 .839 .916 0 -- L. E. radius: 0.455 percent c 
o 

NACA 64-000 BASIC THICKNESS FORM 

, .. --- ----c,=.06 (upper surroC'e) 
, 

1.6 

x 11 (v/V)' v/V t;.v.IV 

I (percent c) (percent c) 

0 0 0 0 3.130 
.5 .739 .872 .934 1.905 

(vY 

, 
,0 : .J /7 ~ :::,... 

V ~- --coe (ower sur~~ 
~ 

----+=i-- I' ............ 
--

NACA 84-009 

t..---" 
r--

1.2 

.8 

'.4 

.75 .892 .990 .995 1. 637 
1. 25 1.128 1. 075 1.037 1.340 
2.5 1. 533 1.131 1.063 .963 
5.0 2.109 1.166 1.080 .686 
7.5 2.543 1.186 1.089 .560 

10 2.S98 1.200 1. 095 .479 
15 3.455 1. 221 1.105 .383 
20 3.S68 1. 236 1.112 .323 
25 4.170 1.246 1.116 .281 
30, 4.373 1. 255 1.120 .248 
35 4.479 1.262 1.123 .221 
40 4.490 1.267 1.126 .198 
45 4.364 1.246 1.116 .176 
50 4.1~6 1. 217 1.103 .158 
55 3.826 1.183 1.088 .140 
60 3.452 1.149 1.072 .• 125 
65 3.026 1.112 1.055 .109 
70 2.561 1.073 1.036 .095 
75 2.069 1.033 1.016 .082 
80 1. 564 .992 .996" .070 
85 1.069 .950 .975 .057 
90 .611 .907 .952 .044 
95 .227 .865 .930 .030 

100 0 .822 .907 0 

o .2 .6 .8 ·1.0 
L. E. radius: 0.579 percent c 
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1'. NACA 64-010 BASIC THICKNESS FORM 0 

,. x II (vI V)' vlV Av.IV (percent c) (percent c) 

0 0 0 0 2.815 
/. 6 .5 .820 .834 .913 1.817 

.75 .989 .962 .981 1. 586 
,-cz "'.08 (upper surface) 1.25 , 1.250 1.061 1.030 1.313 

2.5 1.701 1.130 1.063 .957 
, 5 2.343 1.181 1. 087 .684 

7.5 2.826 1.206 1.098 '.559 

ZO. ~ --- ~~ 

V 
K __ -..::::: 

~ --.08 (lower svrface) ~ 

I. 
10 3:221 1.221 1.105 ,480 
15 3.842 1.245 1.116 .386 
20 4.302 1.262 1.123 .325 
25 4.639 1.275 1.129 .280 
30 4.864 1.286 1.134 .246 
35 4.980 1.295 1.138 .220 

f f' 

" 8 \ 

40 4.988 1.300 1.140 .199 
45 4.843 1.279 1.131 .176 
50 4.586 1.241 1.114 .158 
55 4.238 1.201 1.096 .139 
60 3.820 1.161 1.077 .124 
65 3.345 1.120 1.058 .109 

NACA 64-010 
70 2.827 1.080 1.039 .095 
75 2.281 1.036 1.018 .081 
80 1.722 .990 .995 .069 
85 1.176 .944 .972 .057 .,. 90 .671 .900 .949 .044 
95 .248 .850 .922 .030 

100 0 .805 .897 0 

L.---- -
I'-- L. E. radius: 0.720 perCent c 

0 
NACA 641-012 BASIC 'rHICKNESS FORM 

x 11 (vI V)' V/V t.v./V (percent c) (percent c) , 
{) -I 

/,c, =./Z (upper surfaoe) , 

~ V ~ ~ ~ --- -....: 
--(/ K_';12 (lower surface) ~ ~ 

8
r
( 

~ 
~ 

/. 

/.2 

0 0 0 0 2.379 
.5 .978 .750 .866 1. 663 
.75 1.179 .885 .941 1. 508 

1.25 1.490 1.020 1.010 1.271 
2.5 2.035 1.129 1.063 .943 
5,0 2.810 1.204 1.097 .685 
7.5 3.394 1.240 1.114 .569 

10 3.871 1. 264 1.124 .482 
15 4.620 1.296 1.139 .388 
20 5.173 1.320 1.149 .328 
25 5.576 1.338 1.156 .281 
30 5.8# 1.351 1.162 .247 
35 5;978 1.362 1.167 .221 
40 5.981 1.372 1.171 ' .199 
45 5.798 1.335 1.156 .177 
50 ,5.480 1.289 1. 136 .158 
55 5.056 1.243 1.115 .138 
60 4.548 1.195 1.093 .122 

NAOA 041 -012 65 3.974 1.144 1.070 .103 
70 3.350 1.091 1.044 .088 
75 2.695 1.037 1. 018 .074 
80 2.029 .981 .990 .063 
85 1.382 .928 .963 .052 
90 .786 .874 .935 .045 

,--e-- - - 95 .288 .825 .908 .028 
100 0 .775 .880 0 

--..:... 
L. E. radius: 1.040 percent c 

o 
NACA 64.-015 BASIC THICKNESS FORM 

~ 
/ 

A x.c2 (upper surface) -- K 

I- ,,/ 
V--

V ~ ~ ~ 
I /-- '~ZZ (lower surface) ~ ~ / 

I " ~~ 
II 

........... 

NACA 642 -015 

~ 
~ - - -

1."6 

/.2 

.8 

.4 

x " (oJV)' vlV Av./17 (percent c) (percent c) 

0 0 0 0 1.939 
.5, 1.208 .670 .819 1.476 
.75 1.456 .762 .873 1.354 

1. 25 1.842 .896 .947 1.188 
2.5 2.028 1.113 1.055 .916 
5.0 3.004 1.231 1.109 .'670 
7.5 4.240 1;284 1.133 .559 

10 4.842 1.323 1.150 .482 
15 5.785 1.375 1.172 .389 
20 6.480 1.410 1.187 .326 
25 6.985 1.434 1.198 .285 
30 7.319 1.454 1.206 .250 
35 7.482 1.470 1.213 .225 
40 7.473 1.485 1.218 .202 
45 7.224 1.426 1.195 ' .179 
50 6.810 '1.365 1.168 .158 
56 6.266 1.300 1.140 .135 
60 5.620 1.233 1.110 .121 
65 4.895 1.167 1.080 .105 
70 4.113 1.101 1.049 .090 
75 3.296 1.033 1.016 .078, 
80 2.472 .967 .983 .065 
85, 1.677 .902 .950 .054 
90 .950 .841 .917 .041 
95 .346 .785 .886 .031 

'--r-.-.... -~ ~ 100 0 .730 .855 0 

o .2 .4 .6 .8 /.0 L. E. radius: 1.590 percent c 
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2.0 NACA 613-018 BASIC THIOKNESS FOJlM 

l~c,=.3e (upper surface) 

V --- ~ ~ /" --fr V '"'-.... ~ ~ ./ 

7 v'-- ----.32 ~ower surface) ~ ~ 
I ~ ~ 
7 ~ 

-NACA 643 -0/8 

1.6 

/.2 

.8 

(perc~nt c) I (pergent c) I (v/V)' viI' tJ.v.IV ---,---------------. o 0 0 0 1.646 
.5 1.428 .546 .739 1.360 
.75 1. 720 .705 .840 1. 269 

1. 25 2. 177 . 862 .920 1. 128 
2. 5 3.005 1. 079 1. 039 .904 
5.0 4.186 1. 244 1.115 .669 
7.5 5.076 1. 327 1.152 .558 

10 5. 803 1. 380 1. 17.5 . 486 
15 6.942 1. 450 1. 204 .391 
20 7.782 1. 497 1. 224 .331 
25 8.391 1. 535 1. 239 .288 
~o 8. 7R9 1. 562 1. 250 .255 
M &m 1.~ I.. .m 
40 8. 952 1. 600 1. 265 . 200 
45 8.630 1.518 1. 232 .177 
50 8.114 1. 436 1.198 .154 
55 7.445 1. 354 1.164 .134 
60 6.658 1.272 1.128 .117 
65 5.782 1.190 1. 091 .102 
70 4. 842 1. 109 1. 053 . 088 
75 3.866 1. 028 1. 014 .071 m ~~ .• .m .~ 

- .-. 

/-~ ---r-----f--. -
I--~ r-- ------

~ -
. 4 

85 1. 951 .879 .937 .051 
90 l.m .m .~ .• 
95 .400 .747 .864 .027 

100 0 .695 .834 0 

I L. E. radius: 2.208 percent c 

o 
( 1\ 

/ ----~\ K,:·c,=.44 (upper surface) 

V "" ~'\ / ~ 

/0 V ~ ~ 
/ 1/, --·.44 (lower surface) ~ ~ 
/ ~ ~ 

I. ~ 

L 
.--I-'-NAGA 64,-02/ 

V ~ - r--1----1---!-. 

~ J--~ t--- I---~ 

1.6 

1.2 

.8 

..4 

'0 

NACA 64.-021 BASIC THICKNESS FORM 
, 

1~=-I_~l_'T __ '-_ tJ.".: __ :r 

I 
y 

(percent c) (percent c) 

0 0 o I 0 1. 458 
.5 1.646 . 462 . 680 1. 274 
.75 1. 985 . 603 . 776 1. 203 

1. 25 2.517 .759 .871 1.084 
2.5 3.485 1.010 1.005 .878 
.0;.0 4.871 1. 248 1.117 .665 
7.5 5.915 1. 358 1.165 . .157 

10 6.769 1. 431 1.196 486 
15 8.108 1. 527 1.236 .395 
20 9.095 1. 593 1. 262 .335 
25 9.m7 1. 654 1. 281 .293 
30 10.269 1. 681 1. 297 .259 
35 10.481 1. 712 1.308 .232 
40 10.431 1. 709 1.307 .202 
45 

I 

]0.030 1.607 1. 268 I .178 
50 9.404 1. 507 1. 228 

, 
.IM 

55 8.607 1.406 1.186 .134 
60 7.678 1.307 1. 143 .116 
65 6.649 1. 209 1.099 .099 
70 5.549 1.112 1.055 .084 
75 4.416 1.020 1.010 .071 
m 3.287 .932 .965 .059 
85 2.213 .851 .923 .047 
90 1. 245 .778 .882 .036 
95 .449 .711 .844 .022 

100 I 0 .653 .808 0 

L. E. radius: 2.884 percent c 

~ACA 65,2-016 BASIC THICKNESS FORM 
.. 

! 

, 

___ c,= .20 (upper surface) 
6 _ .. ,"' .. 

=f 
I---

( ~ --,......-
I---

/0 
V V V- ~ ~ /' 

II v<_. __ 
--.20 fower surface) 

~ ~ 
8 '( "~ 

.-

f """"-
NAGA 65, 2-0/6 

1.2 

(perc~~t c) I (perc~nt c) I (l>jl')' I tJ.v.IV 

---------------------------
0 0 I 0 0 1. 950 . ,) 1. 202 .560 .748 1. 650 
.75 1. 423 .690 .831 1. 500 

1. 25 1. 796 .812 .918 1. 275 
2.5 2.507 1. 068 1. 033 .920 
5.0 3.543 1. 217 1.103 .680 
7.5 4.316 1.287 1.134 .545 

10 4.954 ·1.328 1.152 .480 
15 5.958 ~1.379 1.174 .390 
20 6.701 '1. 409 1.187 .325 
25 7.252 1. 433 1.197 .285 
30 7.645 1. 453 1. 205 .255 
35 7.892 1. 469 1. 212 .225 
40 7.995 1.484 1. 218 .200 
45 7.938 1. 497 1. 224 .180 
50 7.672 1. 491 1. 221 .160 
55 7.184 1. 421 1.192 .140 
60 6.495 1.328 1.152 .125 
65 5.647 1. 235 1.111 .110 
70 4.713 1.147 1.071 .095 

4 75 3.738 1.05fi 1.028 .080 
80 2.759 .970 .985 .066 

V ~ J--t--. t--. 
~ 1--~ t--- ~ 

85 1.817 .886 .941 .050 
90 .982 .816 .903 .040 
95 .340 .769 .877 .025 

100 0 .733 .856 0 

o .4 .8 1.0 .C' .6 
a:>/C 

L. E. radius: 1.704 percent c 
I 
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2 NACA' 65,2-02.~ BASIC THICKNESS FORM 
.0 

I 

",.- ~- C', =.2 (uPper surface) 
/ 0-_ l.--- -.6 
V ~ 

~ V 
/ t\ 

/ v-- - '---.2 fower sur'fqce) ~ .2 

1/ ~ ~ 
If I ~ 

~ .8 
'/ '" ~ 

NACA 65,2-023 

4 

V 
V --~ I---

x 

I 
y, (vIV)2 vlV Ilv';v 

(percent c) (percent c) 

0 0 0 0 1. 414, 
.5 1. 664 .400 '.632 1. 161 
.75 2.040 .500 .707 1. 084 

1. 25 2.628 .682 .826 .967 
2.5 3.715 .943 .971 .811 
5.0 5.300 1. 232 1.110 .633 
7.5 6.478 1.375 1.173 .539 

10 7.433 1.467 1.211 .479 
15 8.889 1. 577 1. 256 .380 
20 9.917 1.628 1. 276 .324 
25 10.648 1. 655 1. 286 .281 
30 11.142 1. 677 1.295 .247 
35 11.423 1.694 1. 302 .220. 
40 11.499 1. 708 1. 307 .198 
45 11.361 1.716 1.310 .178 
50 10.949 1. 712 1. 308 .161 
55 10.179 1.606 1. 267 .147 
60 9.108 1.428 1.195 .110 
65 7.848 1. 274 1.129 .096 
70 6.461 1.135 1. 065 .093 
75 5.015 1. 003 1.001 .080 
80 3.618 .893 .945 .053 
85, 2.345 .803 .896 .035 
90 1.258 .732 .856 .022 
95 .439 .682 .826 .018 

100 0 .651 .807 I 0 

~r- ~ -
c.-----0 

L. E. radius: 2.955 percent c 

NACA 65,3-Q18 BASIC THICKNESS FORM 

.' I 

8 1/ 
_._-(!,=.32 (upper surface) 

~ 
~ ~ ~ .. --0 

c7 / ~ ~ / / 

! 1/ ----:32 (lower surface) 
~ ~ 

'{ / "~ 

I "-
I 

NACA 65,3-018 

~ -- - --r---

I. 

1.2 

.8 

x 1/ (vIV)2 v/V 1l".IV (percent c) (percent c) 

0 0 0 0 1.750 
.5 1.324 .650 .806 1.387 
.75 1. 599 .,750 .866 1.268 

1.25 2.004 .872 .934 1.108 
2.5 2.728 1.020 1. 010 .800 
5.0 3.831 1.179 1.086 .677 
7.5 4.701 1.263 1.124 .568 

10 5.424 1.320 1.149 .489 
15 6.568 1.393 1.180 .395 
20 7.434 1.439 1.200 .334 
25 8.093 1.473 1.214 .292 
30 8.568 1.502 1.226 .260 
35 8.868 1.526' 1. 235 .232 
40 8.900 ' 1. 546 1.243 .209 
45 8.916 1. 562 1. 250 .186 
50 8.593 1.513 1.230 .165 
55 8.045 1.433 1.197 .142 
60 7.317 1.348 1.161 .123 
65 6.450 1. 258 1.122 .107 
70 5.486 1.169 1.081 .093 
75 4.456 1.079 1. 039 .080 
80 3.300 .992 .996 .066 
85 2.325 .905 .951 .054 
90 1.324 .818 .904 .040 
95 .492 .738 .859 .024 

100 0 .658 .811 0 

I'--. r---t- ~ ~ -~ 
L. E.'radius: 1.92 percent c 

o 
NACA 65-Q06 BASIC THICKNESS FORM 

x 11 (v/l?)' "IV I!.v.IV 
(percent c) (percent c) 

,-
____ .(!,=.Ol (upper surface) 

.--0 
I """'" r=-~ ----- - ~ ---~O/ fower,surface) r--.. 

~ 

~ 

NACA65-00B 

/6 

.8 

A 

0 0 0 0 4.815 
.5 .476 1. 044 1.022 2.110 
.75 .574 1.055 1.027 1.780 

1.25 .717 1.063 1.031 1.300 
2.5 .956 1. OSI 1.040 .965 
5.0 1.310 1.100 1.049 .695 
7.5 1.589 1.112 1.055 .560 

10 1.824 1.120 1.058 .474 
15 2.197 1.134 1. 065 .381 
20 .2.482 1.143 1.069 .322 
25 2.697 1.149 1.072 .281 
30 2.852 1.155 1.075 .247 
35 2.952 1.159 1.077 .220 
40 2.998 1.163 1.078 .198 
45 2.983 1.166 1.080 .178 
50 2.900 1.165 1.079 .160 
55 2.741 1.145 1.070 .144 
60 2.518 1; 124 1.060 .128 
65 2.246 1.100 1.049 .114 
70 1.935 1. 073 1.036 .100 
75 1.594 1.044 1.022 .086 
80 1.233 1.013 1.006 .074 
85 .865 .981 .900 .060 
00 .510 .944 .972 .046 
95 .195 .002 .950 .031 

100 o . .858 .926 0 

L. E. radius: 0.240 percent c 

o .2 .4 .0 .8 1.0 
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200 NACA 65-008 BASIC THICKNESS FORM 

x 11 (vfV)' I v/V AV./V (percent c) (percent c) 

0 O· 0 0 3.695 
.5 .627 .978 .989 2.010 1.6 
.75 .756 1.010 1.005 1.61ltl 

1.25 .945 1.043 1. 021 1. 340 
2.5 1. 2t17 1. 08t1 1. 042 .95t1 
5.0 1.745 1.125 1. 061 .689 

~ 
.c, "'.04 (upper surf'ace) 

V r.- '. I~ 

~ "":0+ (lower surface) ~ 
........... 
~ 

7.5 2.118 1.145 1. 070 .560 
10 2.432 1.158 1. 07t1 .477 
15 2.931 1.178 1.085 .382 
20 .3.312 1.192 1. 092 .323 
25 3.599 1.203 1.097 .281, 
30 3.805 1. 210 1.100 .248 
35 3.938 1.217 1.103 .221 
40 3.998 1.222 1.105 .199 
45 3.974 1.226 1.107 .178 
50 3.857 L222 1.105 .160 
55 3.688 1.193 1.092 .145 
60 3.337 L 168 L078 .128 

1.2 

.8 
65 2.971 1.130 1.068 .113 

NACA 65-008 70 2.553 1.094 1.046 .098 
75 2.096 1.055 1.027 .084 
80 L617 1.014 1.007 .012 
85 1.131 .971 .985 .059 

·4 90 .664 .923 .961 .044 
.95 .252 .873 .934 .031 
100 0 .817 .904 0 

.,-
r-- L. E. radius: 0.434 percent c 

o 
NACA 65-009 BASIC, THICKNESS FORM 

x 1/ (v/V)' vlV Av./V (percent c) (percent c) 

,1.6 .() 0 0 0 3.270 

:'c, =.06 (upper surf'ace) , 
.5 .700 .945 .1l12 1.962 
.75 .845 .985 .992 1. 655 

L25 1.058 L037 L018 1. 315 

O. 
2.5 1. 421 L089 L044 .,950 
5.0 1. 961 1.134 1.065 .687 

---'1/ K. .. ·.06 (lower 8urrace) ~ ~ 
If """ ~ 

7.5 2.383 1.159 1.077 .560 
10 2.736 L 177 1.085 .477 
15 3.299 1.200 1.095 .382 
20 3.727 1. 216 1.103 .323 
25 4.050 L229 L 109 .280 
30 4.282 1.238 L113 .248 
35 4.431 1.246 1.116 .220 
40 4.49t1 1.252 1.119 .198 
45 4.469 L258 L 122 .178 
50 4.336 1. 250 1.118 .160 

1.2 

.8 
55 4.086 L220 L 105 .144 

NACA 65-009 
60 3.743 L185 L089 '.128 
65 3.328 1.145 L070 .111 
70 2.856 L 103 L050 .097 
75 2.342 1.059 L029 .084 

.4 
80 1.805 1. 013 l.ootl .071 
85 1.260 .968 .981 .051l 
90 .738 .912 .955 .044 

....- 95 .280 .856 .925 .. 030 
100 0 .797 .898 0 --I--

L. E. radius: 0.552 percent c 
o 

NACA 6lHl10 BASIC THICKNESS FORM 

:& 
(perJnt c) (vi V)' I v/V I Av./V (percent c) 

1.6 

,ie, =.08 (upper surface) 0 0 0 0 2.967 
.5 .772 .911 .954 1.911 

O. : 

Ir-t -!-- ~ 

(/ ~ \08 (lower surra'ce) ~ ~ 
r( "'-~ 

.75 .932 .960 .980 1.614 
L25 1.169 1. 025 1.012 1.292 
2.5 1.574 1.086 1.042 .932 
5.0 2.177 1.143 1.069 .679 
7.5 2.647 1.177 L085 .558 

10 3.040 1.197 1.094 .480 
15 3.666 1.224 1.106 .383 
20 4.143 1.242 1.114 .321 
25 4.503 1.257 1.121 .280 
30 4.760 1.268 1.126 .248 
35 4.924 1.277 1.130 .222 
40 4.996 1.284 1.133 .199 

I.e 

(vr 
.8 

45 4.968 1.290 1.136 .179 
50 4.812 1.284 1.133 .160 

NACA 65-010 55 4.530 1.244 I.U5 .141 
60 4.146 1.202 1.096 .126 
85 3.682 1.158 1.076 ; 110 
70 3.156 1.112 1.055 .097 
75 2.584 1.062 1.031 .082 
80 1.987 1.011 L005 .070 
85 L3g5 .958 .979 .058 

V-
I'--

90 .810 .903 .1l50 .045 
95 .306 .844 .919 .030 

100 0 .781 .884 0 

o .Z .4 .6 .8 /.0 L. E. radius: 0.!l87 percent c 
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2.0 NACA 65!-012 BASIC THICKNESS FORM . 
I I x II (vIV) , vlV !;v.IV (percent c) (percent c) 

/.6 
0 0 0 0 2.444 
.5 .923 .848 .921 1.776 

,,~-- ----c, ... 12 (upper surface) 
.75 1.109 .935 .967 1.465 

1. 25 1.387 1.000 1.000 1.200 
2.5 1.875 1.082 1.040 .931 

(vt 

r-~ e---- ~ --- ~ 

I{/ V_ 
--olE (lower surface) ~ ~ 

I( " i'-.. " 

5.0 2.606 1.162 1. 078 .702 
7.5 3.172 1. 201 1. 096 .568 

10 3.647 1.232 1.110 .480 
15 4.402 1.268 1.126 .389 
20 4.975 1.295 1.138 .326 
25 5.406 1.316 1.147 .282 
30 5.716 1.332 1.154 .251 
35 5.912 1.343 1.159 .223 
40 5.997 1. 350 1.162 .204 
45 5.949 1. 357 1.165 .188 
50 5.757 1.343 1.159 .169 
55 5.412 1. 295 1.138 .145 
60 4.943 1.243 1.115 .127 

1.2 

.8 

65 4.381 1.188 1. 090 .111 
NACA 65,-012 70 3.743 1.134 1.065 .094 

75 3.059 1.073 1. 036 .074 
80 2.345 1.010 1.005 .062 
85 1.630 .949 .974 .049 
90 .947 .884 .940 .038 
95 .356 .819 .905 .025 

.4 
100 0 .748 .865 0 

~- -I-

r----'---- l---e-- L. E. radius: 1.000 percent 'c 

o 
NACA 60',-015 BASIC THICKNESS FORM 

.. --- ___ c,=.22 (upper surface) 
x y (vi V)' vlV !;v~IV (percent c) (percent c) 

--------------------------

'f 
........ 

~ ~ -
V f-"' 

~ - ~ ~ ~ ~ 
( v- --.22 (lower surfac~ ~ ~ 
I ~ 
/ '" NACA 65.-015 

I.B 
0 0 0 0 2.038. 

.5 1.124 .654 .809 1. 729 

.75 1. 356 .817 .004 1.300 
1. 25 1. 702 .939 .969 1.156 
2.5 2.324 1.063 1.031 .920 
5.0 3.245 1.184 1.088 .682 
7.5 3.959 1. 241 1.114 .563 

10 4.555 1. 281 1.132 .487 
15 5.504 1.336 1.15R .393 
20 6.223 ' 1.374 1.172 .,334 
25 6.764 1.397 1.182 .290 
30 7.152 1.418 1.191 .255 
35 7.396 1.438 1.199 .227 
40' 7.498 1. 452 1. 205 .203 
45 7.427 1. 464 1. 210 .184 
50 7.168 1. 433 1.197 .160 
55 6.720 1.369 1.170 .143 
60 6.118 1. 297 1.139 .127 
65 5.403 1.228 1.108 .109 
70 4.600 1.151 ].073 .096 

/.2 

.8 

75 3.744 ],077 1.038 .078 
80 2.858 ],002 1.001 .068 
85 1.977 .924 .961 .052 .4 

/ I-- - r--r--
90 1.144 .846 .920 .038 
95 .428 .773 .879 ' .026 

100 0 .697 .835 0 

r--r-- .---f..--~ 
L. E. radius: 1.505 percent c 

o 
NACA 65,-{)18 BASIC THICKNESS FORM 

(vt 

" ,_-- c,=.3E (upper surface) / 
~ ---r-----" ~ L --I V 

V 
.,,- !~ ~ 

/ v- ---o3E (lower surface) ""'" ~ 
'/ ~ 
j r'. 
I 

NACA 653 -018 

x v (oIV)' vlV !;v.IV (percent c) (percent c) 
----------- -----

0 0 0 0 1. 746 
.5 1.337 .625 .791 1.437 
.75 1.608 .702 .8.38 1.302 

1.25 2.014 .817 .004 1.123 
2.5 2.751 1.020 1.010 .858 
5.0 3.866 1.192 1.092 .650 
7.5 4.733 1.275 1.129 .542 

10 5. 457 1.329 1.153 .474 
15 6.606 1.402 1.184 .385 
20 7.476 1.452 1.205 .327 
25 8.129 1.488 1. 220 .285 
30 8.595 1. 515 1.231 .251 
35 8.886 1.539 1.241 .225 
40 8.999 1; 561 1.249 .203 
45 8.001 1.578 1.256 .182 
50 8.568 1.526 1.235 .157 
55 8.008 1.440 1.200 .137 
60 7.267 1.353 1.163 .118 
65 6.395 1.262 1.123 ;104 

1.6 

1.2 

.8 

70 5.426 1.170 1.082 .087 --r- --r--y-- i--

"- ~ ~ '---- ---
75 4.396 1.076 1.037 .074 
80 3.338 .985 .992 .062 
85 2.295 .896 .947 .050 
00 1.319 .813 .002 .039 
95 .400 .730 .854 .026 

100 0 .657 .811 0 

.4 

o .2 .4 
;rIc 

.6 .8 LO L. E. radius: 1.96 percent c 
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2.0 
I I I I 

NACA 65.-021 BASIC THICKNESS FORM 

1.8 

r-- '\ .... c, =.41 {upper surface} 

{ 

l\ ----
h 

/' 
/ 

~ ~"'\ f\ ./ 

x 

I 
y (v/V) , v/v I !!.Va/V (percent c) (percent c) 

I 

0 0 0 0 I 1. 531 
.5 1. 522 .514 .717 1.333 
.75 1.838 .607 .779 1.215 

1.25 2.301 .740 .860 1.062 
2.5 3.154 .960 .980 .838 

01 / 
V 

"'" ~ I / 
, 

'" K\ .. 
'.44 (lower surf'ace) 

I / ,/ " ~ 
/ NACA 654 -02/ 

~~ 

I 
Y ).--- - I--I--1--1-

.I.e 

.8 

5.0 4.472 1.186 1.089 .649 
7.5 5.498 1. 293 1.137 .544 

10 . 6.352 1.371 1.171 .478 
15 7.700 1. 469 1.212 .388 
20 8.720 1. 533 1.238 .330 
25 9.487 1. 580 1.257 .289 
30 10.036 1. 621 1.273 .255 
35 10.375 1. 654 1.286 .229 
40 10.499 1. 680 1.296 .206 
45 

I 

10,366 1. 700 1.304 .184 
50 9.952 1. 633 1. 278 .158 
55 9.277 1.508 1.228 .139 
60 8.390 1.397 L 182 .120 
65 7.360 1.286 1.134 .101 
70 6.224 1.177 1.085 .087 
75 5.024 1.073 1.036 .073 
80 3.800 .970 .985 .058 
85 2.598 .872 .934 .047 
90 1. 484 .778 .882 .035 
95 .546 .694 .833 .020 

100 .616 .785 0 

~ ~ 
).---

t--- I--: t--o 

L. E. radius: 2.50 percent c 

NACA 66,1-012 BASIC THICKNESS FORM 

x y 
(v/V)' v/V !!'Va/V (percent c) (percent c) 

/.6 I 0 0 0 0 2.555 

.A =./2 (upper surface) .5 .900 .854 .924 1. 780 
.75 1.083 .902 .950 1. 540 

1. 25 1. 343 .964 .982 1.247 

(vJ 

, 

~ Vq ---I--'" J.---+-

;: V , I' '--Ii? (lower surface) 
~ 

rl " 1'-. 
"'-

1.2 

.8 

2.5 1.803 1.069 1.034 .925 
5.0 2.484 1.138 1. 067 .673 
7.5 3.019 1.175 1.084 .552 

10 3.482 1. 201 1. 096 .474 
15 4.214 1. 237 1.112 .381 
20 4.779 1.257 1.121 .319 
25 5.218 1. 272 1.128 .280 
30 5.550 1.284 1.133 .248 
35 5.786 1. 293 1.137 .220 
40 5.934 1.302 1.141 .195 
45 5.998 1. 309 1.144 .176 
50 5.972 1.313 1.146 .161 
55 5.844 1.320 1.149 .144 
60 5.594 1.327 1.152 .130 

NACA 66,1-0/2 65 5.165 1.297 1.139 .. 117 
70 4.535 1. 221 1.105 .099 
75 3.789 1.143 1. 069 .083 
80 2.964 1. 061 1.030 .069 
85 2.098 .974 .987 .053 
90 1. 244 .885 .941 .041 

l,..--- - ~ 95 .477 .792 .890 .028 
100 0 .701 .837 0 

I'-- -~ L. E. radius: 0.893 percent c 
o 

NACA 66,2-015 BASIC THICKNESS FORM 

I I 
:c, =.20 (upper surf'ace) 

: /.8 
x y (vW) , v/V AVa/V (percent c) (percent c) 

,.- .'\. 
0 0 0 0 2.085 
.5 1.110 .700 .837 1. 703 

(vl 

~ --- ~ 0., V ---:---r-
~ -( V " 

····.EO (tower surface) ~ ~ 
I " I " NACA '66,i?-0I5 

I.R 

.8 

.75 1. 329 .870 .933 1. 382 
1. 25 1. 645 .940 .970 1.156 
2.5 2.229 1.048 1.024 .898 
5.0 3.086 1.154 1.074 .656 
7.5 3.757 1.210 1.100 .547 

10 4.337 1. 244 1.115 .473 
15 5.255 1.290 1.136 .382 
20 5.964 1.323 1.150 .323 
21i 6.516 1. 342 1.158 .283 
30 6.933 1.359 1.166 .248 
35 7.230 1.374 1.172 .222 
40 7.415 1.387 1.178 .199 
45 7.495 1. 397 1.182 .179 
50 7.460 1. 407 1.186 .161 
55 7.294 1.415 1.190 .145 
60 6.961 1. 421 1.192 .131 
65 6.405 1. 372 1.171 .122 
70 5.597 1. 267 1.126 .102 

.4 75 4.652 1.162 1.078 .080 
80 3.616 1.057 1.028 .066 

V-~ r---b- f--

"'----- f...-- I-" 
r- -I----

85 2.545 .953 .976 .050 
90 1.488 .848 .921 .037 
95 .560 .743 .862 .025 

100 0 .640 .800 0 

o .E .4 .6 .8 1.0 
L. E. radius: 1.384 percent c 
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2. NACA 66,2-018 BASIC THICKNESS FORM .0 
I 
i 
I I 

_ c,=.22 (upper surfac6j 
.8 -

/0 -~ 
2 / 

V J--I- ~ ~ V 
If / V , , ~ ~ 22 fower surroce) 

~ 

8 / 

, 
'I NACA fi6,2-0/8 I~ 
I 

(perc~nt c) (percXnt c) I (vIF)! I vjlT I av.IV 
------------------ ----------

0 0 0 0 1.659 
.5 1. 438 .590 .768 1. 317 
.75 1. 730 .740 .860 1. 209 

1. 25 2.180 .918 .958 1.091 
2.5 2.938 1. 084 1.041 .867 
5.0 3.984 1. 217 1.103 .665 
7.5 4.804 1. 285 1.134 .544 

10 5.486 1. 325 1.151 .469 
15 6.541 1. 373 1.172 .379 
20 7.342 1. 401 1.184 .323 
25 7.957 1. 422 1.192 .282 
30 8.419 1.440 1.200 .251 
35 8.741 1. 456 1. 207 .224 
40 8.933 1. 468 1. 212 .201 
45 8.998 1. 478 1. 216 .181 
50 8.934 1. 488 1. 220 .162 
55 8.719 1. 497 1. 224 .146 
60 8.316 1. 502 1. 226 .134 
65 7.629 1. 442 1. 201 .102 
70 6.657 1. 314 1.146 .089 
75 5.523 1.185 1. 089 .078 
80 4.296 1.059 1. 029 .064 

4 

V 1--- - I---I--t-

85 3.027 .936 .967 .052 
00 1. 789 .817 .004 .O(l 
95 .672 .700 .837 .027 

100 0 .594 .771 0 

'---t--- L.--- j;--

t-- - l---
L. E. radius: 2.30 percent c 

0 
NACA 66-006 BASIC THICKNESS FORM 

x y (./V), v/V I /lva/V (percent c) (percent c) 

-----
6 0 0 0 0 4.941 

.5 .461 1. 052 1. 026 2.500 

Ai'Of (upper surface) 
" 'I 

/0 !'---F '.'Of (lower surfoce) t-.... 
"'-. 

"" I 
NACA 88-008 

1 

1.2 

.8 

.4 

.75 .554 1. 057 1.028 2.020 
1. 25 .693 1.062 1. 031 1. 500 
2.5 .918 1.071 1. 035 .967 
5.0 1. 257 1. 086 1. 042 .695 
7.5 1. 524 1.098 1. 048 .. 554 

10 1. 752 1.107 1. 052 .474 
15 2.119 1.119 1. 058 .379 
20 2.401 1.128 1.062 .320 
25 2,618 1.133 1. 064 .278 
30 2.782 1. 138 1.067 .245 
35 2.899 1.142 1.069 .219 
40 2.971 1.145 1. 070 .197 
45 3.000 1.148 1. 071 .178 
50 2.985 1.151 1.073 .161 
55 2.925 1.153 1. 074 .145 
60 2.815 1. }.i5 1. 075 .130 
65 2.611 1.154 1. 074 .116 
70 2.316 1.118 1. 057 .102 
75 1. 953 1. 081 1.040 .089 
80 1. 543 1. 040 1.020 .075 
85 1. 107 .996 .998 .061 
90 .665 .948 .974 .047 
95 .262 .890 .943 .030 

100 0 .822 .907 0 

o I L. E. radius: 0.223 percent c 

NACA 66-008 BASIC THICKNESS FORM 

x y (v/V)' vjV av./v (pereent c) (percent c) 
Ul 

,-0 ,f. =.03 (upper ,surfoce) 

Id? ~ ,1 l ""'" ~ ~03 (lower surface) "-
.......... 

"'" NACA 68-008 

-- -r--

.8 

.4 

0 0 0 0 3.794 
.5 .610 .968 .984 2.220 
.75 .735 1. 023 1.011 1. 82" 

1.25 .919 1. 046 1. 023 1.388 
2.5 1. 219 1.078 1. 038 .949 
5.0 1. 673 1.107 1. 052 .689 
7.5 2.031 1.128 1.062 .552 

10 2.335 1.141 1. 068 .474 
15 2.826 1.158 1:076 .379 
20 3.201 1.171 1.082 .321 
25 3.490 1.178 1.085 .278 
30 3.709 1.186 1. 089 .246 
35 3.865 1.191 1. 091 .220 
40 3.962 1.196 1. 094 .198 
45 4.000 1. 201 1.096 .178 
50 3.978 1. 205 1.098 .161 
55 3.896 1. 208 1. 099 .145 
60 3,740 1.213 1. 101 .130 
65 3.459 1. 202 1. 096 .115 
70 3.062 1.1.56 1. 075 .101 
75 2.574 1.103 1. 050 .087 
80 2.027 1. 048 1. 024 .073 
85 1. 447 .989 .994 .058 
90 .864 .926 .962 .045 
95 .338 .855 .925 .029 

100 0 .768 .876 0 

I .2 .4 .6 .8 1.0 
<rIc 

L. E. radius: 0.411 percent c 
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2.0 NACA 66-009 BASIC THICKNESS FORM 

x 
(perlent c) (v/V)' v/v M./V (percent c) 

1.6 0 0 0 0 3.352 
.5 .687 .930 .964 2.100 
.75 .824 .999 .999 1.750 

1.25 1.030 1.036 1.018 1.340 
2.5 1.368 1. 079 1.039 .940 

/0 
/0, ~.05 (upper surface) 

~ ::::<: ,....- I , 
--:05 (lower surface) 

"-
I( "-"-

,5.0 1.880 1.119 1.058 .686 
7.5 2.283 1.142 1.069 .552 

10 2.626 1.159 1.077 .473 
15 3.178 1.178 1.085 .379 
20 3.601 1.190 1.091 .323 
25 8.927 1.201 1,096 .280 
30 4.173 1.210 1.100 .246 
85 4.848 1.217 1.103 .220 
40 4.457 1.221 1.105 .197 
45 4.499 1.228 1.108 .178 
50 4.475 1.232 1.110 .161 
55 4.381 1.237 1.112 .145 

I.E 

.8 
60 4.204 1.240 1.114 .130 
65 3.882 1.230 1.109 .116 

NACA 56-DOB 70 8.428 1.172 1.083 .100 
·75 2.877 1.113 1.055 .085 
80 2.263 1.050 1.025 .071 
85 1.611 .985 .992 .057 
90 .961 .915 .957 :043 
95 .374 .839 .916 .028 .4 

100 0 .747 .864 0 
V-
""'- L. E. radius: 0.530 percent c 

I 
o 

NACA 66-OlO BASIC THICKNESS FORM 

x 1/ (v/V) , v/V Il.v./V (percent c) (percent c) 

1.6 0 0 0 0 3.002 

/e, =.07 (upper surface) .5 .759 .896 .947 2.012 
.75 .913 .972 .986 1.686 

1.25 1.141 1.023 1.011 1.296 
2.5 1. 516 1. 078 1.038 .931 
5.0 2.087 1.125 1.061 .682 

,..---or;; k - ~ -;07 fower surface) "-

7.5 2.536 1.154 1.074 .551 
10 2.917 1.174 1.084 .473 
15 3.530 1.198 1.095 .379 
20 4.001 1.215 1.102 .322 
25 4.363 1.226 1.107 .279 

/.2 

If "' ~ 
"" 

30 4.636 1.236 1.112 .246 
35 4.832 1.243 1.115 .220 
40 4.953 1.249 1.118 .198 
45 5.000 1.25. 1.120 .178 
50 4.971 1.261 1.123 .161 
55 4.865 1.265 1.125 .146 

.8 

60 4. 665 1.270 1.127 • ISO 
NACA 6{]-010 65 4.302 1.250 1.118 .114 

70 3.787 1.190 1.091 .099 
75 3.176 1.121 1.059 .085 
80 2.494 1.052 1.026 .070 
85 1.773 .979 .989 .056 
90 1.054 .904 .951 .043 

t---- -I--- 95 .408 .821 .906 .027 
100 0 .729 .854 0 

r-- ~ 
L. E. radius: 0.662 percent c 

o 

NACA 661-012 BASIC THICKNESS FORM 

x 1/ (v/V) , v/v Il.v./V (percent c) (percent c) 
I 

/0, =.Ie (upper surface) 
/ 

0 0 0 0 2.569 
.5 .906 .800 .894 1.847 , - .75 1.087 .915 .957 1.575 

--- ~ ~~ 0 -- --r; ~ f-

I' --':IE (lower surface) 
~ 

(( " ~ "-

1.25 1.358 .980 .990 1.237 
2.5 1. 808 1. 073 1. 036 .913 
5 2.496 1.138 1. 067 .674 
7.5 3.037 1.177 1.085 .549 

10 3.496 1. 204 1. 097 .473 
15 4.234 1.237 1.112 .380 
20 4.801 1.259 1.122 .323 
25 5.238 1.275 1.129 .280 
30 5.568 1.287 1.134 .246 
35 5.803 1.297 1.139 .221 
40 5.947 1. 303 1.142 .197 
45 6.000 1.311 1.145 .176 

/,2 

,8 

50 5.965 1.318 1.148 .162 
NACA 66,,-012 55 5.836 1.323 1.150- .147 

60 5.588 1.331 1.154 .132 
65 5.139 1. 302 1.141 .113 
70 4.515 1. 221 1.105 .098 
75 3.767 1.139 1.067 .084 
80 2.944 1. 053 1.026 .069 

---I-- - --'-- f..---- 85 2.083 .96E .984 .053 
90 1.234 .879 .938 .040 
95 .474 .788 .888 .031 

100 0 .687 .829 0 

o .2 ·4 .6 .8 1.0 L. E. radius: 0.952 percent c 
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2 NACA 66z-{)15 BASIC THICKNESS FORM 0 

x I 11 (v/V) • I v/V I t;.v./V (percent c) (percent c) 
----------

0 0 0 0 2.139 
/. 6 

,-' 
_---ct =.:! (upper surface) 

~ 

v---- - ~ ELY ...-1--- ~ 
14 power surface) ~ ~ 

8 I "\ ~ 
1/ " NACA 662-0/5 

I. 

.5 I.J22 .760 .872 1.652 

.75 1.343 .840 .9)6 1:431 
1. 25 1. 675 .929 .964 1.172 
2.5 2.235 1. 055 1. 027 .895 
5 3.100 1.163 1. 078 .663 
7.5 3.781 1. 208 1.099 .547 

10 4.358 1.242 1.114 .473 
15 5.286 1. 288 1.134 .381 
20 5.995 1.817 1.148 .822 
25 6.543 1.840 1.158 .280 
30 6 .. 956 1. 356 1.164 _.248 
35 7.250 1.370 1.170 .222 
40 7.430 1.380 1.175 .200 
45 7.495 1.391 1.179 .180 
50 7.450 1. 401 1.184 .163 
55 7.283 1.411 1.188 .146 
60 6.959 1.420 1.192 .131 
65 6.372 1.867 1.169 .118 
70 5.576 1.260 1.122 .096 
75 4.632 1.156 1. 075 .080 
80 3.598 1. 053 1.026 .065 
85 2.530 .949 .974 .051 

4 90 1. 489 .847 .920 .039 
95 .566 .744 .863 .025 -

,.--I-:-- - ----f--
100 0 .639 .799 0 

• 
'-- --p-

I--- --- L. E. radius:' 1.435 percent c 

o 
NACA 66s-{)18 BASIC THICKNESS FORM 

II , 
,~ .. - _--c,_.3 (u~Der surfacp) 

x 11 (V/V)2 viv t;.v./V (percent c) (percent c) 

~ -~ I-- -V ----
:...--- ~ t\ 0/ ../'" 

/ /-- --;3 fower surface} ~~ 
I / I " I NACA 68s -0/8 " I 

V ~ ------I--

1.8 

1.2 

.8 

.4 

0 0 0 0 1..773 
.5 1.323 .650 .806 1. 456 
.75 1.571 .. 735 .857 1. 312 

1. 25 1.952 .850 .897 1.121 
2.5 2.646 1. 005 1.002 .858 
5 3.690 1.154 1. 074 .649 
7.5 4.513 1. 234 1.111 .545 

10 5.210 1.285 1.134 .472 
15 6.333 1. 350 1.162 .381 
20 7.188 1. 393 1.180 .323 
25 7.848 1.423 1.193 .282 
30 8.346 1. 445 1. 202 .250 
35 8.701 1. 464 1. 210 .223 
40 8.918 1.481 1. 217 .201 
45 8.998 1.496 1.223 .181 
50 8.942 1. 509 1.228 .163 
55 8.733 1.522 1. 234 .147 
60 8.323 1. 534 1.238 .131 
65 7.580 1.438 1.199 .114 
70 6.597 1. 302 1.141 .095 
75 5.451 1.172 1.083 .077 
80 4.206 1.045 1. 022 .061 
85 2.934 .922 .950 _ .048 
90 1. 714 .803 .896 .037 
95 .646 .692 .832 .022 

100 0 .581 .166 0 

~ ---I--

t-- -~ L~ E. radius: 1.955 percent c 
o 

NACA 66.-{)21 BASIC THICKNESS FORM 

'" 
J \ --····c,-.4 (upper surface)_ 

~ 
:;;;;0-

'\~ I /' ---- .---lJ 
V /" I \ ~ /' 

/ /' -----.4 fower surface) ~~ 
I /1 

, 
I I " I 

N4CA 884-02/ , 
I -~ I-- ,-I---V l--""-

'- V -r--- --- ~ 

1.8 

1.2 

(vt 
.8 

.4 

o 1.0 .2 
a:/c 

.8 .8 .4 

x 11 (v/V) 2 v/V t;.v./V (percent c) (percent c) 
-----

0 0 0 0 1.541 
.. 5 1.525 .580 .761 1.314 
.75 1.804 .635 .797 1. 218 

1. 25 2.240 .755 .869 1.054 
2.5 3.045 .952 .976 .828 
5 4.269 1.143 1. 069 .635 
1.5 5.233 1. 246 1.116 .542 

10 6.052 1.318 1.148 .472 
15 7.369 1.405 1.185 .381 
20 8.376 1. 459 1. 208 .324 
25 9.153- 1. 499 1.224 .283 
30 9.138 1. 528 1. 236 .251 
35 10.154 1. 551 1. 245 .224 
40 10.407 1.574 1.255 .202 
45 10.500 1.594 1.263 .183 
50 10.434 1.611 1. 269 .165 
55 10.186 1.629 1.276 .148 
60 9.692 1. 648 1.284 .132 
65 8.793 1.508 1.228 .114 
70 7.610 1.335 1.155 .093 
75 6.251 1.176 1. 084 .073 
80 4.796 1. 031 1. 015 .058 
85 3.324 .891 .944 .046 
90 1.924 .763 .873 .034 
95 .717 .648 .805 .020 

100 0 .539 .734 0 

L. E. radius: 2.550 percent c 
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e.o NACA 67,1-015 BASIC THICKNESS FORM 

I I I 
x y 

(II/V)' v/F I:>.v./F (percent c) (percent c) 

,c, ",./2 (upper surface) , 
: /.6 

------------------------- -------
0 0 0 0 2.M2 
.5 1.167 .650 .806 1. 560 
.75 1.394 .970 .985 1. 370 , 1. 25 1. 764 1.059 1. 029 1.152 

2.5 2.395 1.140 L068 .906 

(v/ 

( 

~ I.--- I-- f- , 
/' (...:---I--

V/ V'-, 
'- -./2 power surface) ~ 

'( \~ 

NACA 67,/-0/5 \ 

5.0 3.245 1. 209 1.100 .667 
7.5 3.900 1. 239 1.113 .548 

10 4.433 1. 259 1.122 .470 
15 5.283 1.285 1.134 .370 
20 5.940 1.304 1.142 .312 
25 6.454 1. 318 1.148 .276 
30 6.854 1.330 1.153 .248 
35 7.155 1.341 1.158 .221 
40 7.359 1. 351 1.162 .201 
45 7.475 1. 360 1.166 .180 
50 7.497 1.368 1.170 .160 
55 7.421 1.375 1.173 .142 
60 7.231 1. 381 1.175 .124 
65 6.905 1. 388 1.178 .111 
70 6.402 1.390 1.179 .108 
75 5.621 I. 321 1.149 .094 

i.e 

.8 

80 4.540 1.176 1.084 .071 
85 3.327 1. 018 1. 009 .060 
90 2.021 .864 .930 .045 
95 .788 .712 .844 .025 

.4 

V-I---- - r--I--

r-- ~ ~ I--- -
100 0 .570 .755 0 

L. 1'~. radius: 1.523 percent c. 

a 
NACA 747A015 BASIC THICKNESS FORM 

I I 
__ -c, =.ec (upper surface) 

/ 
/ 

x v (v/F)' v/V I:>.v./V (percent c) (percent c) 
---------------------------. 1.6 

~ 0 0 0 0 2.028 
.5 1.199 .660 .812 1. 680 

,0 /" V r-:: ~ ~ y ~ 

(/ /-
-...:: 
~ -'-:2c fower surfac~ 

/ " ~ I "-
NACA U7AOl5 

.75 1. 435 .799 .894 1. 560 
1. 25 1.801 .942 .971 1. 325 
2.5 2.462 1.100 1.049 .990 
5 3.419 1. 201 1.096 .695 
7.5 4.143 1. 259 1.122 .551 

10 4.743 1. 295 1.138 .465 
15 5.684 1.339 1.156 .383 
20 6.384 1.369 1.170 .324 
25 6.898 1. 390 1.179 .283 
30 7.253 1. 409 1.187 .252 
35 7.454 1.423 1.193 .224 
40 7.494 1.435 1.198 .199 
45 7.316 1. 391 1.179 .176 
50 7.003 1. 348 1.161 .156 
55 6.584 1. 306 1.143 .1~ 
60 6.064 1. 265 1.125 .1 

/.2 

.8 

65 5.449 1. 221 1.105 .108 
70 4.738 1.178 1. 085 .093 
75 3.921 1.115 1. 056 .079 
80 3.020 1. 027 1. 013 .065 .4 

t.----- ~ r--!--

r--..: I----I--
I--+-

I---

85 2.086 .938 .969 .052 
90 1.193 .852 .923 .040 
95 .443 .774 .880 .02!l 

100 0 .703 .838 .018 

o .2 
<ric 

.6 .8 1.0 
L. E. radius: 1.544 perceut c 
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NACA MEAN LINE 62 

el,=0.90 ",,=2.81° em",= -0.113 
--

x 1/, dll,/dx PR tlv/V=P.Ri4 (percent c) (percent c) 
------------

-----r---r---
.......... 

~ 
NACA 62 

mean line 

0 0 0.80000 0 0 
1. 25 .726 .56250 .682 .171 
2.5 1. 406 .52500 1.031 .258 
5.0 2.625 .45000 1. 314 .328 
7.5 3.656 .37500 1.503 .376 

lO 4.500 .30000 1. 651 .413 
15 5.625 .15000 1.802 .451 
20 6.000 0 1. 530 .383 
25 5.977 -.00938 1.273 .318 
30 5.906 -.01875 1 .. 113 .279 
40 5.625 -.03750 .951 .238 
50 5.156 -.05625 .843 .211 
60 4.500 -.07500 .741 .185 
70 3.656 -.09375 .635 .159 
80 2.625 -.11250 .525 .131 
90 1.406 -.13125 .377 .094 
95 .727 -.14062 .261 .065 

100 0 -:15000 0 0 

NACA MEAN LINE 63 

e,,=0.80 "'1=1.60° em". = -0.134 

x 11, dll,/dx PR tlv/V=PR/4 (percent e) (percent c) 

r--t---t----I--. 
'~ 

NAt;'A 83 
mean line 

0 0 0.40000 0 0 
1. 25 .489 .38333 .389 .097 
2.5 .958 .36667 .553 .138 
5.0 1.833 .33333 .788 .197 
7.5 2.625 .30000 .940 .235 

lO 3.333 .26667 1.066 .267 
15 4.500 .20000 1.220 .305 
20 5.333 .13333 1. 259 ,315 
25 5.833 .06667 1. 233 .3G8 
30 6.000 0 1.160 .290 
40 5.878 -.02449 .949 .237 
50 5.510 -.04898 .850 .213 
60 4.898 -.07347 .762 .191 
70 4.041 -.09796 .673 .168 
80 2.939 -.12245 .560 .140 
90 1. 592 -.14694 .406 .102 
95 .827 -.15918 .291 .073 

100 0 -.17143 0 0 

NACA MEAN LINE 64 

e,,=0.76 a;=0.74° em,'I=-0.157 • 

x y, dy,/dx PR tlv/V=PR/4 . (percent e) (percent e) 

- t--r---1--- r-... 

~ 

0 0 0.30000 0 0 
1.25 .369 .29062 .257 .064 
2.5 .726 .28125- .391 .098 
5.0 1. 406 .26250 .546 .137 
7.5 2.039 .24375 .668 .167 

10 2.625 .22500 .748 .187 
15 3.656 .18750 .871 .218 
20 4.500 .15000 .966 .242 
25 5.156 .11250 1.030 .258 

NACA 64 
mean line 

30 5.625 .07500 1.040 .260 
40 6.000 0 .999 .250 
50 5.833 -.03333 .910 .228 
60 5.333 ~.06667 .827 .207 
70 4.500 -.10000 .750 .188 
80 3.333 -.13333 .635 .159 

I 90 1.833 -.16667 .466 .117 
95 '.958 -.18333 .334 .084 

100 0 -.20000 0 0 

r--I-

.8 .8 .4 1.0 
.Jt'/c 
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x 
(percent c) 

-------
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,r--
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x 
(percent c) 

-------

~ 

"" 
0 
1. 25 
2.5 
5.0 

\ 7.5 
10 
15 
20 
25 
30 
40 
50 
60 
70 
80 
90 
95 

100 

t--t---. 

I-"'~ 1-"""" L 
X 

(percent c) 

\ 
\ 

-------

0 
1. 25 
2.5 
5 
7.5 

10 
15 
20 
25 
30 
40 
50 
60 
70 
80 
90 
95 

100 --r-... 
.8 /.0 

91 

NACA MEAN LINE 65 

CI1=0.75 Q'i=Oo Cme/I = -0.187 

1/, 
(percent c) dy,/dx PR Avj1T=PR/4 

-------------------- --------
0 0.24000 0 0 

.296 .23400 .205 .051 

.585 .22800 .294 .074 
1.140 .21600 .413 .103 
1. 665 .20400 .502 .126 
2.160 .19200 .571 .143 
3.060 .16800 .679 .170 
3.840 .14400 .760 .190 
4.500 .12000 .824 .206 
5.040 .09600 .872 .218 
5.760 .04800 .932 .233 
6.000 0 .951, .238 
5.760 -.04800 .932 .233 
5.040 -.09600 .872 .218 
3.840 -.14400 .760 .190 
2.160 -.19200 .571 .143 
1.140 -.21600 .413 .103 
0 -.24000 0 0 

NACA MEAN LINE 66 

-cI1=0.76 ",=-0.74° Cm 'I' = -0.222 

1/, I dy,/dx PR AV/V=PR/4 (percent c) 
I 

------ --------- ------- -------
0 0.20000 0 0 

.247 .19583 .135 .J34 

.490 .19167 .244 .061 

.958 .18333 .334 .084 
1. 406 .17500 .408 .102 
1. 833 .16667 .466 .117 
2.625 .15000 .557 .139 
3.333 .13333 .635 .159 
3.958 .11667 .700 .175 
4.500 .10000 .750 .188 
5.333 .06667 .827 .207 
5.833 .03333 .910 .228 
6.000 0 .999 .250 
5.625 -.07500 1. 040 .260 
4.500 -.15000 .966 .242 
'2.625 -.22500 .748 .187 
1. 406 -.26250 .546 .137 
0 -.30000 0 0 

NACA MEAN LINE 67 

cI1=0.80 a:"i=-1.60o Cm,"=-0.266 

y, I 
(percent c) dy,/dx PR AV/V=PR/4 

-------------------- -------

0 0.17143 0 0 
.212 .16837 .137 .034 
.421 .16531 .195 .049 
.827 .15918 .291 .073 

1. 217 .15306 .356 .089 
1. 592 .14694 .406 .102 
2.296 .13469 .483 .121 
2.939 .12245 .560 .140 
3.520 .11020 .616 .154 
4.041 .09796 .673 .168 
4.898 .07347 .762 .191 
5.510 .04898 .850 .213 
5.878 .02449 .949 .237 
6.000 0 1.160 .29'0 
5.333 -.13333 1. 259 .315 
3.333 -.26667 1.066 .267 
1. 833 -.33333 .788 .197 
0 -.40000 0 0 
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I 
! 1 NACA MEAN LINE 210 

I 
I 

e,,=0.30 ai=2.09° em ~'I = -0. 006 

I 
i 
I 

X y, dy,/dx PR AV/V=PR/4 (percent e) (percent e) 

I 
------- ------- ------- ------- -------

0 0 0.59613 0 0 
1. 25 .596 .36236 1. 381 .345 
2.5 .928 .18504 1. 565 .391 
5.0 1. 114 -.00018 1. 221 .305 
7.5 1. 087 .781 .195 

10 1. 058 .626 .156 
......... r--t--

I 

15 .999 489 .122 
20 .940 .408 .102 
25 .881 .348 .087 
30 .823 .302 .075 
40 .705 -.01175 .242 .061 
50' .588 .198 .049 

NACA 210 60 .470 .160 .040 
70 .353 .128 .032 

i 
mean line 

I 

80 .235 .098 .025 
90 .118 

I 
.065 .016 

95 .059 .044 .011 
100 0 0 0 

I 

I 

J 

NACA MEAN LINE 220 

! e.,=0.30 ai=1.86° em",= -0. OlD 

I 

x y, dy,/dx PR AV/V=PR/4 (percent c) (percent c) 

\ 
------- ------- -------- -------- --------

0 0 0.39270 0 0 
1. 25 .442 .31541 .822 .206 

~ 

----
2.5 .793 .24618 1. 003 .251 
5.0 1. 257 .13192 .988 .247 
7.5 1. 479 .04994 .900 .225 

10 1. 535 .00024 .8t)! .200 
15 1. 463 .615 .154 
20 1. 377 .465 .116 

~-- NACA 220 
mean line 

25 1. 291 .378 .095 
30 1. 205 .326 .082 
40 1.033 .253 .063 
50 .861 -.01722 .205 .051 
60 .689 .169 .042 
70 .516 .135 .034 
80 .344 .100 .025 
90 .172 .064 .016 
95 .086 .040 .010 

100 0 0 0 

NACA MEAN LINE 230 

c.,=0.30 a,=1.65° em". = -0.014 

x 1/, dy,jdx 

I 
PlI AVjV=PlIj4 (percent e) (percent e) 

~ 
............... r--

0 0 0.30508 0 0 
1. 25 .357 .26594 .628 .132 
2.5 .666 .22929 .673 .168 
6.0 1.155 .16347 .791 .198 
7.5 1.492 .10762 .853 .213 

10 1. 701 .06174 .859 .215 
15 1.838 -.00009 .678 .170 
20 1. 767 -.02203 .519 .130 

NACA 230 25 1. 656 .419 .105 
30 1;546 .361 .090 

mean line ·40 1.325 .274 .069 
50 1. 104 .217 .054 
60 .883 -.02208 .177 .044 
70 .662 .144 .036 
80 .442 .105 .026 
90 .221 .069 .017 
95 .110 .042 .011 

100 0 0 0 

.2 .4 .0 .8 1.0 
riC 
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NACA MEAN LINE 240 

c,;=0.30 Cli=1.45° Cm'I' = -0.019 

x y, dy,/dx PR AVjV=PR/4 (percent c) (percent c) 
-------------------- ------- -------

0 0 C.25233 0 0 
1. 25 .301 .22877 .377 .094 
2.5 .572 .20625 .491 .123 
5.0 1. 035 .16432 .625 .156 
7.5 1. 397 .12653 .718 .180 

10 1.671 .09290 .750 .188 
15 1. 991 .03810 .677 .169 
20 2.079 -.00010 .556 .142 
25 2.018 -.02169 .477 .119 
30 1. 890 .410 .103 
40 1. 620 .304 .076 
50 1.350 .234 .0f,9 
60 1. 080 .186 .047 
70 .810 -.02700 .150 .038 
80 .540 .110 .028 
90 .270 .071 .018 
95 .135 .047 .012 

100 0 0 0 

NACA MEA:\, LINE 250 

c,,=0.30 ai=1.26° Cm c/4=-O.026 

X y, dy,/d.r PR At,/V=PR/4 
(percent c) (percent c) 

------- -------- ----------- -------- --------

0 0 0.21472 0 0 
1. 25 .258 .19920 .281 .070 
2.5 .498 .18416 .369 .092 
5.0 .922 .15502 .477 .119 
7.5 1.277 .12909 .552 .138 

10 1. 570 .10458 .592 .148 
15 1. 982 .06162 .624 .156 
20 2.199 .02674 .610 .153 
25 2.263 -.00007 .547 .137 
30 2.212 -.01880 .470 .117 
40 1. 931 .346 .087 
50 1. 609 .255 .064 
60 I. 287 .197 .049 
70 .965 -.03218 .154 .038 
80 .644 .119 .oao 
90 .322 .076 .019 
95 .161 .051 .013 

100 0 0 0 , 

NACA MEAN LINE a=O 

c,,=1.0 Q:i=4.56° Cm,I' = -0.083 

x y, dy,/dx PR AV/V=PR/4 
(percent c) (percent c) 

------------------ ------- -------
0 0 

---O~75867--- ----------- ---O~498---.5 .460 1. 990 
.75 .641 .69212 1. 985 .496 

1.25 .964 .60715 1. 975 .494 
2.5 1. 641 .48892 1. 950 .488 

~ 
'---

5.0 2.693 .36561 1. 900 .475 
7.5 3.507 .29028 1. 850 .463 

10 4.161 .23515 1. 800 .450 
15 5.124 .15508 1.700 .425 
20 5.747 .09693 1.600 .400 
25 6.114 .05156 1. 500 .375 
30 6.277 .01482 1. 400 .350 
35 6.273 -.01554 1.300 .325 
40 6.130 -.04086 1.200 .300 
45 5.871 -.06201 1.100 .275 

.8 to 

50 5.516 -.07958 1.000 .250 
55 5.081 -.09395 .900 .225 
60 4.581 -.10539 .800 .200 
65 4.032 -.11406 .700 .175 
70 3.445 -.12003 .600 .150 
75 2.836 -.12329 .500 .125 
80 2.217 -.12371 .400 .100 
85 1. 604 -.12099 .300 .075 
90 1.013 -.11455 .200 .050 
95 .467 -.10301 .100 .025 

100 0 -.07958 0 0 
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i'----r---.. 
------~ --- '" /'--.... 

~ 

NACAa:QI 
mean line 

- -

~ I'---.. 
.............. 

~ t-..... 
"'/'--.... , 

I 

I-... 

NACA a=QE 
mean line 

- t---

'-..... 
~, 

-....... 

~ ~ 
~ 
~ 

NACA a=Q3 
mean lioe 

I---I--~ 
.4 .8 1.0 

x 
(percelJt c) 

NACA MEAN LINE a=O.1 

y, 
(perc~nt c) dll,jdx I 

Cmc14 =-O.OF6 

PR I AV/T'=PRj4 

~--~j--~§~')-~=:::- -~.-~-::-
5. 0 2. 689 . 38235 
7. 5 3. 551 .31067 

10 4.253 .25057 
15 .5. 261 . 16087 
20 5. 905 . 09981 
25 6. 282 . 05281 
30 6.449 .01498 
35 6.443 -.01617 
40 6.296 -.04210 
45 6. 029 -. 06373 
50 5.664. -.08168 
li5 5.218 -.09637 
60 4.706 -.10806 
65 4.142 -.11694 
70 3.541 -.12307 
75 2.916 -.12644 
80 2.281 -. 1269..~ 
85 1. 652 -.12425 
90 1. 045 -.11781 
95 .482 -.10620 

100 0 -.08258-

I. 7li 
I. 616 
I. 515 
I. 414 
1. 313 
I. 212 
1.111 
I. 010 
.909 
.808 
.707 
.606 
.505 
.404 
.303 
.202 
.101 

o 

.429 

.404 

.379 

.354 

.328 

.303 
.278 
.253 
.227 
.202 
.177 
.152 
.126 
.101 
.076 
.050 
.025 

o -, 
,--------.-:~------------------

NACA MEAN LINE a=0.2 

CI,=l.O a,=4.17" Cm,/I=-0.094 ! 
~',J "'~, 'J I "", I Po I "tv-P"'I -- :: ~-- --~;al-- -~~~]~i~-!I-~=~~ -~~~~~~-l\ 

2.5 I. 530 .47592 
5. 0 2. 583 . 37661 1. 667 O. 417 
7.5 3.443 .31487 

10 4. 169 . 26803 
15 5.317 . 19373 
20 6.117 . 12405 
25 6. 572 . 06345 
30 6. 777 . 02030 
35 6.789 -.01418 
40 6. 646 -. 04246 
45 6. 373 -. 06588 
50 5. 994 -. 08522 
55 5. 527 -. 10101 
60 4.989 -'.11359 
65 4.396 -.12317 
70 3. 762 -. 12985 
75 3.102 -.13.363 
80 2.431 -. 13440 
85 l. 764 -. 13186 
90 1. 119 -.12541 
95 .518 -. JI361 

100 0 -. 0~941 

1. 563 
1. 459 
1. 355 
1. 250 
1.146 
1.042 

.938 

.834 

.729 

.625 

.521 

.417 

.313 

.208 

.104 
o 

NACA MEAN LINE a=0.3 

CI,=1.0 ai=3.84° Cm,,,= -0.106 

x y, dy,jdx I PR (percent c) (percent c) 
------- -------- ---------

0 0 
----ii:~553ii-- -----------

.5 .389 

.75 .546 .60524 
1. 25 .832 .54158 
2.5 1.448 .45399 
5.0 2.458 .36344 
7.5 3.293 .30780 1.538 

10 4.008 .26621 
15 5.172 .20246 
20 6.052 .15068' 
25 6.685 .10278 
30 7.072 .04833 
35 7.175 -,00205 1. 429 
40 7.074 -. O~710 1. 319 
45 6.816 -,06492 1.209 
50 6.433 -.08746 1.099 
55 5.949 -.10567 .989 
60 5.383 -.12014 .879 
65 4.753 -.13119 .769 
70 4.076 -.13901 .659 
75 3.368 -.14365 .549 
80 2.645 -.14500 .440 
85 1. 924 -.14279 .330 
90 1. 224 -.13638 .220 
95 .570 "':.12430 .110 

100 0 -.09907 0 

.391 

.365 

.339 

.313 

.287 

.260 

.234 

.208 

.182 
.156 
.130 
.104 
.078 
.052 
.026 

o 

AvjT7=PR/4 

-.---------

0.385 

.367 

.330 

.302 

.275 

.247 

.220 

.192 

.165 

.137 

.110 

.082 

.055 

.028 
0 
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~ 
r--...... 
~ 
~ 
~ 
~ 

NACA a 2 0A 
mean line 

- r--- I--. 

~ , 

~ 
~ 
~ 
~ 

NACA a=D.5 
mean line 

t--t--r--I--

~ 

""~ ""-., 
'" NACA a=O.fJ 

mean line 

- t---r-- I--
.6 .8 1.0 

xlc 

NACA MEAN LINE a=O.4 
-------------------------_._-

CI,=1.0 

(perc~nt c) (perg~nt c) dy,/dx I PR f>.vjV=P~/4 
---~~-- --~. 3:-- -~~O:6~~~-I-~~~~=- -~~~~~~-

. 75 . 514 . 57105 
1. 25 . 784 . 51210 
2. 5 1. 367 . 43106 
.1. 0 2. 330 . 34764 
7. 5 3. 131 . 29671 

10 3.824 .25892 
15 4. 968 . 20185 
20 5. 862 . 15682 
25 6. 546 . 11733 
30 7. 039 . 07988 
35 7.343 .04136 
40 7.439 -.00721 
45 7. 275 -.05321 
50 6. 929 -. 08380 
55 6.449 -.10734 
60 5.864 -.12567 
65 5.199 -.13962 
70 4.475 -.14963 
75 3.709 -.15589 
80 2.922 -.15837 
85 2. 132 -. 15683 
90 1. 361 -.15062 
95 .636 -.13816 

100 0 -.11138 

1. 429 

1.310 
1.190 
1.071 
.952 
.833 
.714 
.595 
.476 
.357 
.238 
.119 

o 

NACA MEAN LINE a=O 5 

CI,=l.O ai=3.04° Cm,/.=-0.139 

0.357 

.327 

.298 

.268 

.238 

.208 

.179 

.149. 

.119 

.089 

.060 

.030 
o 

~~~~~I~er~~nt~J ___ dY,/~ ___ _ ~_J_:~:~~~~ 
0 0 ------------- ----------- -----------
.5 .345 0.58195 
.75 .485 . 53855 

1. 25 .735 .43360 
2.5 1.295 .40815 
5.0 2.205 .33070 
7.5 2.970 .28365 

10 3.630 .24890 
15 4.740 .19690 1. 333 0.333 
20 5.620 .15650 
25 6.310 .12180 
30 6.840 .09000 
35 7.215 .05930 
40 7.430 .02800 
45 7.490 -.00630 
50 7.350 -.05305 
55 6.965 -.09765 1.200 ;300 
60 6.405 -.12550 1. 067 .267 
65 5.725 -.14570 .933 .233 
70 4.955 -.16015 .800 .200 
75 4.130 ; -.16960 .667 .167 
80 3.265 -.17435 .533 .133 
85 2.395 -.17415 .400 .100 
90 1. 535 -.16850 .267 .067 
95 .720 -.15561> .133 .033 

100 0 -.12660 0 0 

NACA MEAN LINE a=0.6 
-

CI,=1.0 ",,=2.58° Cm,I<=-0.158 

X 1/, dy,/dx PR f>.v/V=PR/4 (percent c) (percent c) 
------------------ ------------

0 0 ------------- ----------- -----------
.5 .325 0.54825 
.75 .455 .50760 

'1. 25 .695 .45615 
2.5 1. 220 .38555 
5.0 2.080 .31325 
7.5 2.805 .26950 

10 3.435 .23730 
15 4.495 .18935 
20 5.345 .15250 1. 250 0.312 
25 6.035 .12125 
30 6.570 .09310 
35 6.965 .06660 
40 7.235 .04060 
45 7.370 .01405 
50 7.370 -.01435 
55 7.220 -.04700 
eo 6.880 -.09470 
65 6.275 -.14015 1. 094 .273 
70 5.505 -.16595 .938 .234 
75 4.630 -.18270 .781 .195 
80 3.695 -.19225 .625 .156 
85 2.720 -.19515 .469 .117 
90 1. 755 -.19095 . ;112 .078 
95 .825 -.17790 .156 .039 

100 0 -.14550 0 0 

95 
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NACA MEAN LINE a=0.7 
--, 

CI,=1.0 Q'i=2.09° Cm./. = -0.179 

x y, dy,jdx PH !:J.vjl'=Puj4 (percent c) (percent c) 
------------------------ -------

0 0 ------------- ----------- -----------
.5 .305 0.51620 
.75 .425 .47795 

1. 25 .655 .42960 
2.5 . 1.160 .36325 

"-
5.0 1. 955 .29545 
7.5 2.645 .25450 

"'-
~ 

10 3.240 .22445 
15 4.245 .17995 
20 5.060 .14595 
25 5.715 .11740 1.176 0.294 

~ 
30 6.240 .09200 

I 35 6.635 .06840 
40 6.925 .04570 
45 7.095 .02315 
50 7.155 0 
55 7.090 -.02455 

NACA a=O.l 60 6.900 -.05185 
mean line 65 6.565 -.08475 

70 6.030 -.13650 
75 5.205 -.18510 .980 .245 
80 4.215 -.20855 .784 .196 
85 3.140 -.21955 .588 .147 
90 2.035 -.21960 .392 .098 
9.1 .965 -.20725 .196 .049 

100 0 -.16985 0 0 ----- -............. 
-

NACA MEAN LINE a=O.R 

CI,=1.0 ai=1.5·lo Cm ,/.=-0.202 

(perc~nt ~L (perg:nt c) -' __ ~~~ __ I ___ ~_I~~=p~ 
0 0 ------------- ----------- -----------
.5 .287 0.48535 
.75 .404 .44925 

1. 25 .616 .40359 
2.5 1.077 .34104 

"" 
5.0 1. 841 .27718 
7.5 2.483 .23868 

10 3.043 .21050 
15 3.985 .16892 

~ 
20 4.748 .13734 
25 5.367 .11101 
30 5.863 .08775 1. III 0.278 
35 6.248 .06634 
40 6.528 .04601 
45 6.709 .02613 

NACA a=0.8 
mean line 

50 6.790 .00620 
55 6.770 -.01433 
60 6.644 -.03611 
65 6.405 -.06010 
70 6.037 -.08790 
75 5.514 -.12311 
80 4.771 -.18412 
85 3.683 -.23921 .833 .208 
90 2.435 -.25583 .556 .139 
95 1.163 -.24904 .278 .069 -r---- 100 0 -.20385 0 0 

NACA MEAN LINE a=O.9 

Cl,=1.0 Qi=O.90° Cm,/.= -0.225 

x 

I 
1/, 

I dy,jdx PR 

I t:J.v/'V=Pllj4 (percent c) (percent c) 
------- --

0 0 ----0:45482-- ----------- -----------
.5 .269 
.75 .379 .42064 

~ 
\ 

1.25 .577 .37740 
2.5 1.008 .31821 
5.0 1. 720 .25786 
7.5 2.316 .22153 

10 2.835 .19500 
15 3.707 .15595 
20 4.410 .12644 
25 4.980 .10196 
30 5.435 .08047 
35 5.787 .06084 1.053 0.263 

NACA a=0.9 
40 6.045 .04234 
45 6.212 .02447 

mean/ine 50 6.290 .00678 
55 . 6.279 -.01111 
60 6.178 -.02965 
65 5.981 -.04938 
70 5.681 -.07103 
75 5.265 -.09583 
80 4.714 -.12605 
85 3.987 -.16727 
90 2.984 -.25204 

~ ~ 
95 1.503 -.31463 .526 .132 

100 0 -.26086 0 0 

.4 .8 .8 1.0 
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x 
(percent c) 

------
0 
.5 
.75 

1. 25 
2.5 
5.0 
7.5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 - i---
.8 1.0 

97 

NACA MEAN LINE a=1.0 

Cl,=l.O ai=Oo Cm",=-0.250 

y, dy,/dx Pn AV/V=Pn/4 (percent c) 
---,----- ------- ------------

0 ----.---.---- --.-------- _.--.----- . 
. 250 0.42120 
.350 .38875 
.535 .34770 
.930 .29155 

1. 580 .23430 
2.120 .19995 
2.585 .17485 
3.365 . 13805 
3.980 .11030 
4.475 .08745 
4.860 .06745 
5.150 .04925 1. 000 0.250 
5.355 .03225 
5.475 .01595 
5.515 0 
5.475 -.01595 
5.355 -.03225 
5.150 -.04925 
4.860 -.06745 
4.475 -.08745 
3.980 -.11030 

I 
3.365 -.13805 
2.585 -.17486 
1. 580 -.23430 
0 ---.--------- -------.--- -----------
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III-AIRFOIL ORDINATES 

Page Page 
K A C A OOOL _ - - - - - ___ - - - - __ - ________ .. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 100 NACA 643-218 ______________________________________ .___ 105 
KACA 0009______ _ _ _ _ ____ _ _ _ ____ ___ __________ _______ _ ___ 100 N ACA 64

3
-418_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 106 

N ACA 1408 _______________________ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 100 N ACA 64
3
-618 ____ - ____ ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ 106 

NACA 1410______ _______________________________________ 100 N ACA 644-02L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 106 
KACA 1412 _____________ - - ______________ .__ ______ __ __ ____ 100 NACA 64r 22L _________________________ .. -----__ _ __ ___ _ _ 106 
NACA 2412 ____ . __ - ____ -- _____ "__ ________ ___ _______ ______ 100 N ACA 6~-42L _ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1')6 
NACA 241L. _________ - _ _ __ _ __ _ __ _____ __ _ _____ __ _ _______ 100 N ACA 65, 3-018 _____ .. _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ _ _ _ _ __ _ _ _ _ _ _ _ _ 106 
N ACA 2418 ___________ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 100 
NACA 242L __________ ~ _____________ .__ _ _ ____ _ __ __ _____ __ 100 

N ACA 65,3-418, a=Q.8 ______________ .. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 106 
NACA 65, 3-618 ____ -- _____________________ ~____________ 106 

NACA 2424____ __ _ __ _ _ _ _ _ ___ _ _ _ _ _ ___ __ _ __ _ _ _ _ _ _ _ _____ _ __ 100 NACA 65(216)-415, a=0.5 _____ .__________________________ 106 
NACA 4412_____________________________________________ 101 N ACA 65-006 _________________________________________ . _ _ 106 

. NACA 4415 ___________ ~_________________________________ 101 N ACA 65-009 ____ - - __ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 107 
N ACA 4418_ _ ____ _ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 101 NACA 65-206 ________ - _ _ _ __ _ _ _ __ _ __ __ _ __ __ _ __ _ __ __ _ _ _ _ _ _ 107 
N ACA 442L _ _ _ _ _ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ __ _ _ __ 101 N ACA 65-209___ __ _ _ _ _ __ _ _ __ _ _ _ __ _ _ _ _ _ __ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ 107 
N ACA 4424____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ 101 N ACA 65-210 ____ .. ___ - _ _ __ __ _ _ _ __ _ __ __ __ _ _ _ _ _ _ _ ____ _ _ _ __ 107 
N ACA 23012 ______ - __ - - - - - - - - - ___ - - - - __ - __ c _ _ _ _ _ _ _ _ _ _ _ _ _ 101 N ACA 65-410___ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ ___ _ __ _ _ ____ _ _ _ _ __ 107 
N ACA 23015 _____________________________________ .. _ _ __ __ 101 N ACA 65\-012_ - _ __ _ __ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ ___ _ _ _ __ _ _ _ _ _ ___ _ _ 107 
NACA 23018____________________ ________________________ 101 N ACA 6k212_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ __ _ __ _ 1Q7 
N ACA 2302L _ _ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 101 
NACA 23024 _______________________ ~ __ _ _ ____ ___ _________ 101 

NACA 65\-212, a=0.6 ____________________ --------------c- 107 
N ACA 65\-412_ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ __ _ _ __ _ __ _ _ _ _ _ __ _ _ 107 

NACA 63,4-420 _____________________________ .___________ 102 N ACA 65
2
-015_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 107 

NACA 63,4-420, a=;0.3 ____ .______________________________ 102 N ACA 65
2
-215 _______ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 108 

NACA 63(420)-422_ ___ ____ _ _ _ ____ __ _____ _ __ _____ __ __ ____ 102 N ACA 65r 415_ - _____ - ______ ,_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 108 
N ACA 63(420)-517 _____ .. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 102 NACA 65r 415, a=0.5 _____________ ~______________________ 108 
N ACA 63-006 __ "_ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 102 NACA 65:>018 ________ .. _____________________________ ,,--- 108 
NACA 63-009 ____ ~ ____ -_ _ ___ __ ___ ___ ___ _______ _ _________ 102 N ACA 653-218 _________ .. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 108 
N ACA 63-206_ _ _ _ ____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 102 N ACA 653-418_ _ _ _ _ _ _ _ _ _____ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 108 
N ACA 63-209 _______________________________ . ___________ c 102 NACA 653-418, a=0.5 _____ "______________________________ 108 
NACA 63-210_ ______ _ _ ____ __ __ ____ __ ___ ___ __ _ __ _ _ _______ 102 N ACA 653-618_ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 108 
NACA 63\-012 ____________________ .. ______________ ------- 102 NACA 65

3
-618, a=0.5 _______________________________ ._____ 108 

N ACA 63\-212_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ 103 N ACA 65
4
-021.. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 108 

N ACA 63\~412_ _ _ _ _ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 103 N ACA 654-221.. - _____ - - - ___ - ___________ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 109 
N A C A 63

r
O 15 ____________________________________ ~ _ _ _ _ _ 103 N ACA 654-421.. ___________ .. ______________________ c _ _ _ _ _ _ 109 

N ACA 63r 215_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 103 NACA 65r 421, a=0.5____________________________________ 109 
N ACA 63r 415_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 103 N ACA 65(211)-114.. __ - __ - _____ - ___________ - _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ 109 
N ACA 63r 615_ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 103 N A C A 65(12!)-·420 _______ - ___ .. ____________ - _____ .. ___ .. _ _ _ _ _ _ 109 
N ACA 633-018_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 103 N ACA 66,1-212 _______ - __ .. __ - - - ________ - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ 109 
NACA 633-218 _______________ ~_ _ _ _______ ____ _ _ _______ ___ 103 N ACA 66(215)-016 _____________________ - _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ 109 
NACA 633-418 ___ .. __ ~____ _______________________________ 103 N ACA 66(215)-216_ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - c 109 
N ACA 633-618_ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 103 NACA 66(215)-216, a=0.6_______________________________ _ 109 
N ACA 634-021.. ________________________________ . _ _ _ _ _ _ _ _ _ 104 N ACA 66(215)-416 _________ - - .. _ - - __ - __ - - _ - - __ - - ____ - - _ _ _ 109 
N ACA 63r 22L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ 104 NACA 66-006___________ ________________________________ 110 
N ACA 634-421.. __________ . ___ . __ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 104 N ACA 66-009 _________________________ .. - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 110 
NACA 64-006______ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___ _ _ _ _____________ 104 N ACA 66-206 ________________ - ________ - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 110 
NACA 64-0'09___________________________________________ 104 N ACA 66-209 ___________ .. ___ - _________ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ 110 
NACA ·64-108 __________________ . ___ . ____ ._ _ __ ______ _ _ ___ __ 104 N ACA 66-2lO_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 110 
NACA 64-110 _________________ c__ __ _ _ _ __ _ _____ __________ 104 NACA 66\-012_ _ _ _ __ ____ _ _ _ _____ ____________ ______ _ _____ 110 
N ACA 64-206_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 104 NACA 66

1
-212_ _ _ __ _ __ __ _ ___ ___ ___________________ ______ 110 

NACA 64-208 ____________________ .. __ . _ . _____ .. _ __ __ ___ ____ 104 NACA 66r 015 _______________ - _________ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ 110 
N A C A 64-209 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 104 N ACA 66

2
-215 _______________ - ___________ - ___________ - _ _ 110 

NACA 64.,-210. ______ . ___ . _______________ ._. ______________ 105 N ACA 66r 415 ___________ " _ - _ - _________ - _ - - __ - _ _ _ _ _ __ ___ 110 
NACA 64\-012 _____________ . ________________ .. ________ ._ _ 105 NACA 66:>018_ _ _ __ _ _ _ __ __ ________________ _ ______ _ __ ____ 111 
NACA 64\-112 __________ .______________________ _________ 105 NACA 66:>218_.______ ____________________ _______________ 111 
NACA 64\-212_ _ _ __________ _____ _ ______ ___ ______________ 105 NACA 66

3
-418 _________ ._ _____ _____________ __ _ __ ____ _ ___ III 

N ACA 64\-412 _______________ .. ____ .. _ .. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 105 NACA 66r 02L _ _ ___ __ _ _____ ________________ ______ _ ___ __ 111 
N A C A 64r O 15 ____________ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 105 N ACA 66~-22L _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 111 
NACA 64

2
-215 __________________________________ .. _______ . 105 N ACA 67,1-215 _____________________________ .. _ ___ ____ _ _ __ 111 

NACA 64
2
-415 _____________________ " ____________ . _____ ~__ 105 N ACA 747 A315 _______________________ .. _ - __________ ~ _ __ __ 111 

NACA 64:>018 __________________________ "_______________ 105 N ACA 747 M15 ______ ________________ ,,_ __ _______ _ _ _ __ _ __ _ III 



NACA 0006 NACA 0009 NACA 1408 NACA 1410 NACA 1412 
[Stations and ordinates given In percent of [Stations and ordinates given In percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given In percent of 

airfoil chord] airfoil chord] airfoil chord] airfoil chord] airfoil chord] 

Upper surface Lower surface 

---~---

Station Ordinate Station Ordinate 

Upper surface Lower snrface 

------
Station Ordinate Station Or<'Jnat~· 

Upper surface Lower surface 

--------------
Station Ordinate Station Ordinate 

Upper surface Lower surface l 
Statiou Ordinate Statiou Ordinate I 

Upper surface Lower surface 

Station Ordinate Station Ordinate 

------------- ---- ~---------- -------------- -------------- -------------

0 0 0 0 
1.25 .95 1.25 -.9(> 
2.5 1.31 2.5 -1.31 
5.0 1.78 5.0 -1.78 
7.5 2.10 7.5 -2.10 

10 2.34 10 -2.34 
15 2.67 15 -2.67 
20 2.87 20 -2.87 
25 2.97 25 -2.97 
30 3.00 30 -3.00 
40 2.90 40 -2.90 
50 2.65 50 -2.65 
60 2.28 60 -2.28 , 

70 1.83 70 -1.83 
80 1.31 80 -1.31 
90 .72 90 -.72 
95 .40 95 -.40 

100 (.06) 100 (-.06) 
100 0 100 0 

L. E. radius: 0.40 I 

0 0 0 0 
1. 25 1. 42 1.25 -1.42 
2.5 ·1.96 2.5 -1.96 
5.0 2.67 5.0 -2.67 
7.5 3.15 7.5 -3.15 

10 3.51 10 -3.51 
15 4.01 15 -4.01 
20 4.30 20 -4.30 i 
25 4.46 25 -4.46 
30 4.50 30 -4.50 
40 4.35 40 ~4.35 
50 3.97 50 -3.97 
60 3.42 60 -3.42 
70 2.75 70 -2.75 
80 1.97 80 -1.97 
90 1.09 90 -1.09 
95 .60 95 -.60 

100 (.10) 100 (-.10) 
100 0 100 0 

L. E. radius: 0.89 

0 0 0 0 
1.189 1.324 1.311 -1.200 
2.418 1.862 2.582 -1.620 
4.896 2.602 5.104 -2.134 
7.386 3.138 7.614 -2.458 
9.883 3.558 10.117 -2.682 

14.889 4.171 15.111 -2.953 
19.904 4.574 20.096 -3.074 
24.926 4.819 25.074 -3.101 
29.950 4.939 30.050 -3.063 
40.000 4.869 40.000 -2.869 
50.020 4.502 49.980 -2.556 
60.034 3.931 59.966 -2.153 I 
70.041 3.193 69.959 -1.693 
80.039 2.305 79.961 -1.193 
90.027 1.271 89.973 -.659 
95.016 .698 . 94.984 -.378 

100.000 .084 100.000 -.084 I 

L. E. radius: 0.70 -I Slope of radius through L. E.: 0.05 . 

0 0 0 0 I 

1.174 1.639 1.326 -1. 515 
I 2.398 2.297 2.602 -2.055 

4.870 3.194 5.130 -2.726 
7.358 3.837 7.642 -3.157 
9.854 4.338 10.146 -3.462 

14.861 5.062 15.139 -3.844 
19.880 5.531 20.120 -4.031 
24.907 5.809 25.093 -4.091 
29.937 5.940 30.063 -4.064 
40.000 5.836 40.000 -3.836 
50.025 5.385 49.975 -3.439 
60.042 4.692 59.958 -2.914 
70.051 3.804 69.949 -2.304 
80.049 2.741 79.951 -1.629 
90.034 1. 513 89.966 -.901 
95.021 .832 94.979 -.512 

100.000 .105 100.000 -.105 

---
L. E. radius: 1.10 
Slope of radius through L. E.: 0.05 

0 0 0 0 
1.158 1. 954 1.342 -1. 830 
2.378 2.733 2.622 -2.491 
4.845 3.786 5.155 -3.318 
7.330 4.537 7.670 -3.857 
9.824 5.118 10.176 -4.242 

14.833 5.951 15.167 -4.733 
19.857 6.486 20.143 -4.986 
24.889 6.799 25.111 -5.081 
29.925 6.940 30.075 -5.064 
40.000 6.803 40.000 -4.803 
50.029 6.267 49.971 -4.321 
60.051 5.453 59.949 -3.675 
70.061 4.413 69.939 -2.913 
80.058 3.178 79.942 -2.066 
90.040 '1. 753 89.960 -1.141 
95.025 .966 94.975 -.646 

100.000 .126 100.000 -.126 

L. E. radius: 1.58 
Slope of radius through L. E.: 0.05 

NACA 241 2 NACA 241 5 NACA 241 8 NACA 2421 NACA 2424 
[Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of 

airfoil chord] airfoil chord] airfoil chord] airfoil chord] airfoil chord] 

I 
Upper surface Lower surface I 

Station Ordinate . Station Ordinate 

Upper surface Lower surface I 

Station Ordinat~ StatIOn Ordinate' 

Upper surface Lower surface 

-------
Station Ordinate Station Ordinate 

Upper surface Lower surfac~ 

Station Ordinate Station Ordinate 

Upper surface Lower surface 

Station Ordinat3 Station Ordinate 

------------- ------------- ------.------- ------------- ---- -------

0 
-2~i5 

0 0 
1. 25 1. 25 -1.65 
2.5 2.99 2.5 -2.27 i 5.0 4.13 5.0 -3.01 
7.5 4.96 7.5 -3.46 , 

10 5.63 10 . -3.75 
15 6.61 15 -4.10 I 20 7.26 20 -4.23 

I 25 7 .. 67 25 -4.22 
30 7.88 30 -4.12 
40 7.80 40 -3.80 
50 7.24 50 -3.34 

I 
60 6.36 60 -2.76 
70. 5.18 70 -2.14 
80 3.75 80 -1.50 
90 2.08 90 -.82 
95 1.14 95 -.48 

100 (.13) 100 (-.13) , 
ioo ----- 100 o I 
L. E. radius: 1.58 I 
Slope of radius through L. E.: 0.10 

0 
-2~7i 

0 0 
1.25 1.25 -2.06 
2.5 3.71 2.5 -2.86 I 
5.0 5.07 5.0 -3.84 , 
7.5 6.06 7.5 -.4.47 

10 6.83 10 -4.90 
15 7.97 15 -5.42 
20 8.70 20 -5.66 
25 9.17 25 -5.70 
30 9.38 30 -5.62 
40 9 .. 25 40 ' -5.25 
50 8.57 50 -4.67 I 
60 7.50 60 -3.90 
70 6.10 70 -3.05 
80 4.41 80 -2.15 
90 2.45 90 -1.17 
95 1. 34 95 -.68 

100 (.16) 100 (-.16) 
100 ----- 100 0 

L. E. radius: 2.48 

I 
Slope of radius through L. E.: 0.10 

0 -3:28 0 0 
1.25 1. 25 -2.45 
2.5 4.415 2.5 -3.44 
5.0 6.03 5.0 -4.68 
7;5 7.17 7.5 -5.48 

10 8.05 10 -6.03 
15 9.34 15 -6.74 
20 10.15 20 -7.09 
25 10.65 25 . -7.18 
30 10.88 30 -7.12 
40 10.71 40 -6.71 
50 9.89 50 -5.99 
60 8.65 60 -5.04 
70 7.02 70 -3.97 
80 5.08 80 -2.80 
90 2.81 90 -1.53 
95 1. 55 95 -.87 

100 (.19) 10.0 (-.19) 
100 - 100 0 

L. E. radius: 3.56 
Slope·of radius through L. E.: 0.10 

0 0 0 
1. 25 3.87 1.2& ~2.82 

2.5 5.21 2.5 -4.02 
5.0 7.00 5.0 -5.51 
7.5 8.29 7.5 -6.48 

10 9.28 10 -7.18 
15 10.70 15 -8.05 
20 11.59 20 -8.52 
25 12.15 25 -8.67 
30 12.38 30 -8.62 
40 12.16 40 -8.16 
50 11.22 50 -7.31 
60 9.79 60 -6.17 
70 7.94 70 -4.87 
80 5.74 80 -3.44 
90 3.18 90 -1.88 
95 1. 76 95 -1.06 

100 (.22) 100 (-.22) 
100 ----- 100 0 

L. E. radius: 4.85 
Slope of radius through L. E.: 0.10 

--

0 0 0 0 
.885 3.892 1.615 -3.646 

2.012 5.449 2.988 -4.965 
4.380 7.552 5.620 -6.614 
6.820 9.052 8.180 -7.692 
9.300 10.215 10.700 -8.465 

14.333 11.888 15.667 -9.450 
19.427 12.959 - 20.573 -9.959 
24.555 13.593 25.445 ~10.155 

29.700 13.874 30.300 -10.124 
40.000 13.606 40.000 -9.606 
50.U8 12.532 49.882 -8.644 
60.203 10.903 59.797 -7.347 
70.244 8.824 69.756 -5.824 
80.233 6.352 79.767 -4.130 
90.161 3.502 89.839 -2.280 
95.098 1. 930 94.902 -1.292 

100.000 ------- 100.000 0 

L. E. radius: 6.33 

I Slope of radius through L. E.: 0.10 

--' -- ----
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NACA 441 2 NACA 441 5 NACA 441 8 NACA 4421 NACA 4424 

[Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinaws given in percent. of [Stations and ordinaws given in percent of [Stations and ordinaws given in percent of 

airfoil chord] airfoil chord] airfoil chord] airfoil chord] airfoil chord] 

Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface 

------
------

Station Ordinate Station Ordinate Station Ordinate Station Ordinaw Station Ordinate Station Ordinate Station Ordinaw Station Ordinaw Station Ordinaw Station Ordinate 

---------_. ---- -------------- ------- --------------- ---~ ---

0 0 0 0 
1.25 2.44 1.25 -1.43 

0 0 0 
1. 25 3.07 1. 25 ... -179 

0 
--3~76-

0 0 
1. 25 1.25 -2.11 

0 0 0 
1. 21; 4.45 1.25 -2.42 

0 0 0 0 
.530 3.964 1. 970 -3.472 

2.5 3.39 2.5 -1.95 2.5 4.17 2.5 -2.48 2.5 5.00 2.5 -2.99 2.5 .5.84 2.5 -3.48 1.536 5.624 3.464 -4.656 

5.0 4.73 5.0 -2.49 5.0 5.74 5.0 -3.27 5.0 6.75 5.0 -4.06 5.0 7.82 5.0 -4.78 3.775 7.942 6.225 -6.006 

7.5 5.76 7.5 -2.74 7.5 6.91 7.5 ~3. 71 7.5 8.06 7.5 -4.67 7 . .5 9.24 7.5 -5.62 6.153 9.651 8.847 -6.931 

10 6.59 10 -2.86 10 7.84 10 -3.98 10 9.11 10 -5.06 10 10.35 10 -6.15 8.611 11.012 11. 389 -7.512 

15 7.89 15 -2.88 15 9.27 15 -4.18 15 10.66 15 -5.49 15 12.04 15 -6.7.1 13.674 13.045 16.326 -8.169 

20 8.80 20 -2.74 20 10.25 20 -4.15 20 11.72 20 -5.56 20 13.17 20 -6.9g 18.858 H.416 21.142 -8.416 

25 9.41 25 -2.50 25 10.92 25 -3.98 25 12.40 25 -5.49 25 13.88 25 -6.92 24.111 15.287 25.889 -8.411 

30 9.76 30 -2.26 
40 9.80 40 -1.80 

30 11.25 30 -3.75 
40 11.25 40 -3.25 

30 12.76 30 -5.26 
40 12.70 40 -4.70 

30 1!.27 30 -6.76 
40 14.16 40 -6.16 

29.401 15.738 30.599 -8. 238 
40.000 15.606 40.000 -7.'606 

50 9.19 50 -1.40 50 10.53 50 -2.72 50 11.85 50 -4.02 50 13.18 50 -5.34 50.235 14.474 49.765 -6.698 

60 8.14 60 -1.00 60 9.30 60 -2.14 60 10.44 6a -3.24 60 11.60 60 -4.40 60.405 12.674 59.595 -5.562 

70 6.69 70 -.65 70 7.63 70 -1.55 70 8. 55 70 -2.45 70 9.50 70 .. -3.35 70.487 10.312 69.513 -4.312 

80 4.89 80 -.39 80 5.55 80 -1.03 80 6.22 80 -1.67 80 6.91 80 -2.31 80.464 7.447 79.536 -3.003 

90 2.71 90 -.22 90 3.08 90 -.57 90 3.46 90 -.93 90 3.85 90 -1.27 90.320 4.099 89.680 -1.655 

95 1. 47 95 -.16 95 1.67 95 -.36 95 1. 89 95 -.55 95 2.11 95 -.74 95.196 2.240 94.804 ~.964 

100 (.13) 100 (-.13) 
100 ------- 100 0 

100 (.16) 100 (-.16) 
100 100 0 

100 (.19) 100 (-.19) 
100 I ------- 100 0 

100 (.22) 100 (-.22) 

- 100 ----- 100 0 
100.000 ----- 100.000 0 

L. E. radius: 6.33 

L. E. radius: 1.58 L. E. radius: 2.48 L. E. radius: 3.56 L. E. radius: 4.85 Slope of radius through L. E.: 0.20 

Slope of radius through L. E.: 0.20 Slope of radius through L. E.: 0.20 Slope of radius through L. E.: 0.20 Slope of radius through L. E.: 0.20 -------
- -

NACA 2301 2 NACA 2301 5 NACA 2301 8 NACA 23021 NACA 23024 

[Stations and ordinaws given in percent of [Stations and ordinates given in percent of [Stations and ordinaws given in percent of [Stations and ordinates given in percent of [Stations and ordinaws given in percent of 

airfoil chord] airfoil chord] airfoil chord] airfoil chord] airfoil chord] 

Upper surface Lower stuface Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface 

------- -------

Station- Ordinaw Station Ordinate Station Ordinate Statio!l Ordinaw Station OrdiDaw Station Ordinate Station Ordinate Station Ordinaw StatioD Ordinate Station Ordinate 

------------- --- -------------- -------------- ----------------

0 0 0 
1.25 2.67 1. 25 -1.23 

0 
-3~34 

0 0 
1. 25 1.25 -1.M 

0 0 0 
1.25 4.09 1. 25 -1.83 

0 
-4~87 

0 0 
1. 25 1. 25 -2.08 

0 0 0 0 
.277 4.017 2.223 -3.303 

2.5 3.61 2.5 -1.71 2.5 4. 44 2.5 -2.25 2.5 5.29 2.5 -2.71 2.5 6. 14 2.5 -3.14 1.331 5.764 3.669 -4. 432 

5.0 4.91 5.0 -2.26 5.0 5.89 5.0 -3.04 5.0 6.92 5.0 -3.80 5.0 7.93 5.0 -4.52 3.853 8.172 6.147 -5.862 

7.5 5.80 7.5 -2.61 7.5 6.90 7.5 -3.61 7.5 8. 01 7.5 -4.60 7.5 .9.13 7.5 -5.55 6.601 9.884 8.399 -6.860 

10 6.43 10 -2.92 10 7.64 10 -4.09 10 8.83 10 -5.22 10 10.03 10 -6.32 9.423 11. 049 10.577 -7.647 

15 7.19 15 -3.50 15 8.52 15 -4.84 15 9.86 15 -6.18 15 11.19 15 -7.51 15.001 12.528 14.999 -8.852 

20 7.50 20 -3.97 20 8.92 20 -5.41 20 10.36 20 -6.86 20 11.80 20 -8. 30 20.253· 13.237 19.747 -9.703 

25 7.60 25 -4.28 25 9.08 25 -5.78 25 10.56 21\ -7.27 25 12.05 25 -8.76 25.262 13.535 24.738 -10.223 

30 7.55 30 -4.46 30 9.05 30 -5.96 30 10.55 30 -7.47 30 12. 06 30 -8. 95 30.265 13. 546 29.735 -10.454 

40 7.14 40 -4.48 40 8.59 40 -5.92 40 10.04 40 -7.37 40 11.49 40 -8.83 40.256 12.928 39.744 -10.278 

50 6.41 50 -4.17 50 7.74 50 -5.50 50 9.05 50 -6.81 50 10.40 50 -8.14 50.235 11.690 49.766 -9.482 

60 5.47 .60 -3.67 60 6.61 60 -4.81 60 7.75 60 -5.94 60 8.90 60 -7.07 60.202 10. 008 59.798 -8.242 

70 4.36 70 -3.00 70 5.25 70 -3.91 70 6.18 70 -4.82 70 7.09 70 -5.72 70.162 7.988 69.838 -6.664 

80 3.08 80 -2.16 80 3.73 80 -2.83 80 4.40 80 -3.48 80 5.05 80 -4.13 80.116 5.687 79.884 _4.803 

90 1.68 90 -1.23 90 2.04 90 -1.59 90 2.39 90 -1. 94 90 2.76 90 -2.30 90.064 3.115 89.936 -2.673 

95 .92 95 -.70 95 1.12 95 -.90 95 1. 32 95 -1. 09 95 1.53 95 -1.30 95.036 1. 724 94.964 -1.504 

100 (.13) 100 (-.13) 
100 ----- 100 0 

100 (.16) 100 (-.W) 
100 ----- 100 0 

100 (.19) 100 (-.19) 
100 100 0 

100 (.22) 100 (-.22) 
100 ----- 100 0 

100 ----- 100 0 

L. E. radius: 6.33 

. L. E. radius: 1.58 
Slope of radius through L. E.: 0.305 

L. E. radius: 2.48 
Slope of radius through L. E.: 0.305 

I,. E. radius: 3.56 
Slope of radius through L. E.: 0.305 

L. E. radius: 4.85 
Slope of radius through L. E.: 0.305 

Slope of radins through L.E.: 0.305 
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NACA 63,4-420 
[Stations and ordinates given in percent of 

airfoil chord] 

Upper surface J,ower surface 
---------

Station Ordinate Station Ordinate I 
---------

:~1.590 I 0 0 0 
.215 1.790 .785 
.430 2.196 1.070 =g~ I .887 2.827 1. 613 

2.082 3.954 2.918 -3.210 
4.538 5.557 5.462 -4.293 
7.024 6.793 7.976 -5.097 
9.526 7.817 10.474 -5.749 

14.554 9.424 15.446 -6.732 
19.603 10.589 20.397 -7.405 
24.663 11.414 25.337 -7.834 
29.732 11.895 30.268 -8. 007 
34.S03 12.036 35.197 -7.916 
39.874 11.906 40.126 -7.622 
44.940 11.556 45.060 -7.176 
50.000 11.025 .10.000 -6.613 
55.052 10.333 54.948 -5.953 
60.095 9.492 59.905 -5.208 
65.127 8.523 64.873 -4.403 
70.148 7.438 69.852 -3.MO 
75.156 6.253 74.844 -2.673 
80.150 4.990 79.850 -1.806 
85.129 3.684 84.871 -.992 
90.094 2.379 89.906 -.311 
95.047 1. 131 94.953 .133 

100 0 100 0 

L. E. radius: 3.16 
Slope of radius through I,. E.: 0.168 

NACA 63A-420 

a=0.3 
[Stations and ordinates given in percent of 

airfoil chord] 

Upper surfncc wwer surface I 
------___ -_-1 

Station Ordinate 
---

Station Ordinate I 

, 

0 0 0 0 
.065 1.814 .935 -1.502 
.260 2.241 1. 240 -1.805 
.691 2.912 1.809 -2.244 

1.856 4.128 3.144 -2.968 I 
4.268 5.878 .5.712 -3.914 
6.771 7.237 8.229 -4.601 

i 9.280 8.366 10.720 -5.158 
14.347 10.132 15.6.53 -5.996 
19.4.18 11.4IO 20.542 -6.570 
24.604 12.296 25.396 -6.948 
29.808 12.781 30.192 -7.125 
35.00S 12.848 34.992 -7.108 
40.145 12.594 39.855 -6.934 I 
45.243 12.089 44.757 =~:~b I 50.308 II. 388 49.692 
55.344 JO.516 54.656 -5.756 
60.353 9.497 59.647 -5.189 
65.339 8.357 64.661 -4.553 
70.305 7.120 69.695 ' -3.856 ' 
75.256 5.807 74.744 -3.111 
80.197 4.453 79.803 -2.337 i 
85.13-1 3.108 84.866 -1.568 
90.073 1.836 89.927 -.856 I 
95.025 . .728 94.975 -.272 

i 100.000 0 100.000 0 

L. E. radius: 3.16 I 

Slope of radius through L. E.: 0.262 

NACA 63(420)-422 
[Stations and ordinates given in percent of 

airfoil chord] 

I 

Upper snrfflce Lower surface 
------

Station Ordinate Station Ordinate I 
-------------

0 0 0 0 I 
.187 1. 959 .S13 -1.759 

3.98 2.402 I. 102 -2.122 
.850 3.088 1.650 -2.660 

2.041 4.312 2.959 -3.568 
4.492 6.050 5.508 -4.786 
6.977 7.387 8.023 -.1.691 1 

9.478 8.496 10.522 -6.428' 
14.509 ·10.231 15.491 -7.539 
19.563 11.489 20.437 -8.305 i 
24.630 12.377 25.370 -8.797 
29.705 12.890 30.295 -9.002 
34.784 13.034 35.216 -8.914 
39.861 12.883 40.139 -8.599 
44.934 12.493 45.066 -8.113 
50.000 11.907 50.000 -7.495 
55.057 11. 147 54.943 -6.767 
60.104 10.227 59.896 -5.943 
65.140 9.169 64.860 -5.049 
70.163 7.988 69.837 -4.100 
75.172 6.700 74.828 -3.120 
80. Ie,S 5.329 79.835 -2.145 
85.142 3.918 84.8.18 -1.226 
90.103 2.513 89.897 -.445 
95.051 1.181 94.949 .083 

100.000 0 100.000 0 

J,. E. radius: 3.82 
Slope of radius through L. E.: 0.168 

---

NACA 63(420)-51 7 NACA 63-006 
[Stations and ordinat.:ls given in percent of [Stations and ordinates given in percent of 

airfoil chord] airfoil chord] 
I 

Upper surface Lower surface I 
Upper surface Lower surface 

-------
Station Ordinate Station Ordinate Station Ordinate Station Ordinate 

---------------------------
0 0 0 0 0 0 0 0 

.5 .503 .5 -.503 

.75 .609 .75 -.609 
.200 1.551 .800 -1.301 
.412 1.912 I. 088 -1.562 
.866 2.477 1.634 -1.941 1.25 .771 1.25 -.771 

2.058 3.498 2.942 -2.568 2.5 1.057 2.5 -1.057 
4.511 4.966 5.489 -3.386 5.0 1. 462 5.0 -1.462 
6.996 6.104 8.004 -3.984 7.5 1. 766 7.5 -1.766 
9.497 7.050 10.503 -4.466 10 2.010 10 -2.010 

15 2.386 15 -2.386 
20 2.656 20 -2.656 

14.527 8.542 15.473 -.1.178 
19.578 9.633 20.422 -5.653 
24.642 10.416 25.358 -5.940 25 2.841 25 -2.841 
29.715 10.887 30.285 -6.027 30 2.954 30 -2.954 
34.791 11. 0.13 35.209 -.1.903 35 3.000 35 -3.000 
39.866 10.977 40.134 -5.621 40 2.971 40 -2.971 
44.936 10.699 45.064 -5.223 4.1 2.877 45 -2.877 
50.000 10.254 50.000 -4.738 50 2.723 50 -2.723 
55.055 9.660 54.945 -4.184 55 2.517 55 -2.517 

60 2.267 60 -2.267 
65 I. 982 65 -I. 982 

60.101 8.92.1 59.899 -3.569 
65.135 8.067 64.865 -2.917 
70.157 7.099 69.843 -2.239 70 I. 670 70 -1.670 
75.166 6.030 74.834 -1.554 75 I. 342 75 -1.342 
80.159 4.877 79.841 -.897 80 1.008 80 -1.008 
S5.137 3.668 84.863 -.304 85 .683 85 -.683 
90.100 2.434 89.900 .150 90 .383 90 -.383 
95.050 1.213 94.950 .367 95 .138 95 -.138 

100.000 0 100.000 0 100 0 100 0 

L. E. radius: 2.283 L. E. radius: 0.297 

- - - __ J Slope of radius through L. E.: 0.211 

i-< 
o 
~ 

!:d 
t'i 
'"d o 
!:d 
>-:3 

Z 
? 
00 
t>:) 

H>-

I z 
e3 .... 
o 
Z 
~ 
~ 
-< .... 
[IJ. 
o 

NACA 63-009 NACA 63-206 NACA 63-209 NACA 63-210 NACA 631-012 ~ 
(l 

[Stations and ordinates riven in p('rcent of [Stations and ordinat", given in perccnt of [Stations and ordinates given in percent of [Stations and ordinatl's given in pe.rcent of [Stations and ordinates given in percent of S 
airfoil chord] airfoil chord] airfoil chord] airfoil chord] airfoil chord] "" 

Upper suriace Lower surface Upper surface J.lowcr surface 
--------------

Station Ordinate Station Ordinate Station Ordinate Station Ordinate 
-------------- --------------

0 0 0 0 0 0 0 0 
.5 .749 .5 -.749 .458 .551 .042 -.451 
.75 .906 .75 -.906 .703 .677 .797 -.537 

1.25 1.151 1. 25 -1.151 
I 2.5 I. 582 2.5 -1. 582 

I. 197 .876 1. 3.03 -.662 
2.438 I. 241 2.562 -.869 

5.0 2.196 5.0 -2.196 : 
7.5 2.655 7.5 -2.655 I 

10 3.024 10 -3.024 
15 3.591 15 -3.591 I 
20 3.997 20 -3.997 

4.932 I. 776 5.068 -1.144 
7.429 2.189 7.571 -1.341 
9.930 2.526 10.070 -1.492 

14.934 3.058 15.066 -1. 712 
19.941 3.451 20.059 -1. 859 

25 4.275 25 -4.275 24.950 3.736 25.050 -1. 946 
30 4.442 30 -4.442 29.960 3.926 30.040 -1.982 
35 4.500 35 -4.500 
40 4.447 40 -4.447 ' 

34.970 4.030 35.030 -I. 970 
39.981 4.042 40.019 -1.900 I 

45 4.296 4.5 -4.296 44.991 3.972 45.009 -I. 782 
50 4.056 . 50 =gg~ I 55 3.739 55 

50.000 3.826 50.000 -1. 620 
I 55.008 3.612 54.992 -1.422 

60 3.358 60 -3.358 60.015 3.338 59.985 -1.196 
tiS 2.928 65 -2.928 65.020 3.012 64.980 -.952 
70 2.458 70 -2.458 70.023 2.642 69.977 -.698 
75 1.966 75 -1.966 75.023 2.237 74.927 -.447 
80 1.471 80 -1. 471 80.022 I. 804 79.978 -.212 
85 .990 85 -.990 85.019 ]. 356 84.981 -.010 
90 .550 90 -.550 90.013 .900 89.987 .134 
95 .196 95 0. 196 i 100 0 100 

95.006 .454 94.994 .178 I 
100.000 0 100.000 0 

L. E. radius: 0.631 1,. E. radius: 0.297 
Slope of radius through L. E.: 0.0842 

- -- -

UppP,' surface Lower surface. 

Station IOrdinate Stat.ion Ordinate 
---------------

0 0 0 0 
.437 .796 .563 -.696 
.680 .973 .820 -.833 

1.170 1. 255 1.330 -1.041 
2.408 I. 765 2.592 -1. 393 -
4.897 2.510 5.103 -1.878 
7.394 3.077 7.606 -2.229 
9.894 3.539 10.106 -2.505 

14.901 4.263 15.099 -2.917 
19.912 4.792 20.088 -3.200 
24.925 5.169 25.075 -3.379 
29.940 5.414 30.060 -3.470 
34.956 5.530 35.044 -3.470 
39.971 5.518 40.029 -3.376 
44.986 5.391 45.014 -3.201 
50.000 5.159 50.000 -2.953 
55.012 4.834 54.988 -2.644 
60.022 4.429 59.978 -2.287 
65.029 3.958 ·64.971 -I. 898 
70.033 3.430 69.967 -I. 486 
75.034 2.861 74.966 -1. 071 
80.032 2.267 79.968 -.675 
85.027 1.668 84.973 -.317 
90.019 1.067 89.981 -.033 
95.009 .512 94.991 .120 

100.000 0 100.000 0 

L. E. radius: 0.681 
Slope of radius through L. E.: 0.0842 

Upper surface Lower surface 
I 

Station Ordinate Station ordina~1 ----
0 0 0 0 I 

.430 .876 .570 -.776 
I .669 1.107 .831 -.967 

1.162 1.379 I. 338 -1.165 
I 2.398 1. 939 2.602 -1.567 

4.886 2.753 5.114 -2.121 

I 

7.382 3.372 7.618 -2.524 
9.882 3.877 lO.ll8 -2.843 

14.890 4.665 15.lIO -3.319 I 

19.902 5.240 20.098 -3.648 
24.917 5.647 25.083 -3.857 
29.933 5.910 30.067 -3.966 
34.951 6.030 35.049 -3.970 
39.968 6.009 40.032 -3.867 I 
44.985 5.861 45.015 -3.671 
50.000 5.599 50.000 -3.393 

I 55.013 5.235 54.987 -3.045 
60.024 4.786 59.976 -2.644 
65.032 4.264 64.968 -2.204 
70.036 3.684 69.964 -1.740 
75.038 3.061 74.962 -1.271 
SO. 036 2.414 79.964 -.822 
85.030 1. 761 84.970 -.415 
90.021 1. 121 89·979 -.087 
95.010 .530 94.990 .102 

100.000 0 100.000 0 

L. E. radius:· 0.770 
Slope of radius through L. E.: 0.0842 

Upper surface I . Lower surface 

Station Ordinate Station Ordinate 
----------------

o 0 0 0 
.5 .985 .5 -.985 
.75 ].194 .75 -1.194 

1.25 ].519 1.25 -1.519 
2.5 2.102 2.5 -2.102 
5.0 2.925 5.0 -2.925 
7.5 3.542 7.5 -3.542 

~~ g~~ ~~ =t~~~ I 
20 5.342 20 -5.342 
25 5.712 25 -5.712 
30 5. 930 30 -5.930 
35 6.000. 35 -6.000 
40 5. 920 40 - 5. 920 
45 5. 704 45 - 5. 704 
50 5.370 50 -5.370 
55 4. 935 55 -4. 935 
60 4. 420 60 -4.420 
65 3.840 65 -3.840 
70 3. 210 70 -3.210 
75 2.556 75 -2.556 
SO 1. 902 SO -I. 902 
85 1. 274 85 -1. 274 
90 .707 90 -.707 
95 .250 95 -.250 

100 0 100 0 

L. E. radills: 1.087 
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NACA 631-212 NACA 631-412 NACA 632-015 NACA 632-215 
[Stations and ordinates given in percent of [Stations and ordinaj;es gben in percent oj ;Stations and ordinates given in percent of [Stations and ordinates given in percent of 

airfoil chord] airfoil chord] , airfoil chord] airfoil chord] 

Upper surface Lower surface 

Station I~ I 
Station i Ordinate 

o I 0 o ,0 
.417 1.0.32 .583 -.932 
.657 1.260 .843 -1.120 

1.145 1.622 1.355 -1.408 
2.378 2.284 2.622 -1.912 
4.863 3.238 5.137 -2.606 
7.358 3.963 7.642 -3.115 
9.859 4.554 10.141 -3.520 

14.S68 5.470 15. 132 : -4.124 
19.882, 6.137 20.118 -4.545 
2{.900 I 6.606 25.100 -4.816 

~n~1 6.901 30.080 -4.957 
7.030 35. OW -4.970 

39.962 6.991 40.038 -4.849 
44.982 6.799 45.018 -4.609 
50.000 6. 473 50.,000 -4.267 
55.016 6.030 54.984 -3.~ 
60.029 5.491 59.971 -3.349 
65.038 4.870 64.962 -2.810 
70.043 4.182 69.957 ·-2.238 
75.045 3.451 74.955 -1.661 
80.042 2.698 79.958 -1.106 
85.035 ' 1.947 84.965 -.601 
90 .. 025 1.224 89.975 -.190 
95.012 .566 94.988 .066 

100.000 0 100.000 0 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
--- -----1 

0 0 0 0 
.336 1.071 .664 -'.871 
.• 167 1. 320 .933 -1.040 

1.041 1. 719 1. 459 -1.291 
2.257 2.460 2.743 -1. 716 
4.727 3.544 5.273 -2.280 
7.218 4.379 7.782 -2.685 
9.718 .1.063 10.282 -2.995 

14.735 6.138 15.265 -3.446 
19.765 6.929 20.235 -3.745 
24.800 7.499 25.200 -3.919 
29.840 7.872 30.160 -3.984 
34.882 8.059 35.118 -3.939 
39.924 8.062 40.076 -3.778 
44.964 7.894 45.036 -3.514 
50.000 7.576 50.000 -3.164 
55.031 7.125 54.969 -2.745 
60.057 6.562 59.943 -2.278 
65.076 5.899 64.924 -1. 779 
70.087 5.153 69.913 -1. 265 
75.089 4.344 74.911 -.764 
80.084 3.492 79.916 -.308 
85.070 2.618 84.930 .074 
90.049 1. 739 89.951 .329 
95.023 .881 94.977 .383 

100.000 0 100.000 0 

~ 

Uppe,r surface Lower surface , 

i Station Ordinate Station Ordinate 
--------------

0 0 0 0 
.5 1.204 .5 -1. 204 
.75 1. 462 .75 -1.462 

1. 25 1.878 1. 25 -1.878 
'2·5 2.610 2.5 -2.610 
5.0 3.648 5.0 -3.648 
7.5 4.427 7.5 -4.427 

10 5.055 10 -5.055 
15 6. on 15 ~6.011 
20 6.693 20 -6.693 
25 7.155 25 -7.155 
30 7.421 30 -7.421 
35 7.500 35 -7.500 
40 7.386 40 -7.386 
45 7.099 45 -7.099 
50 6.665 50 -6.665 
55 6.108 55 -6.108 
60 5.458 60 -5.453 
65 4.721 65 -4.721 
70 3.934 70 -3.934 
75 3.119 75 -3.119 
80 2.310 80 -2.310 
85 1.541 85 -1. 541 
90 .852 90 -.852 
95 .300 95 -.300 

100 0 100 0 

Upper surface Lower surface I 

Station Ordinate Station Ordinate 
-------------

0 0 0 0 
.399 1.250 .601 -1.150 
.637 1.528 .863 -1.388 

1.120 1. 980 1. 380 -1.766 
2.348 2.792 2.652 -2.420 
4.829 3.960 5.171 -3.328 
7.323 4.847 7.677 -3.999 
'9.823 5.569 10.177 -4.535 

14.834 6.682 15.166 -5.336 
19.852 7.487 20.148 -5.895 
24.875 8.049 25.125 -6.259 
29.900 8.392 30.100 -6.448 
34.926 8.530 35.074 -6.470 
39.952 8. 457 40.048 -6.315 
44.977 8.194 45.023 -6.004 
50.000 7.768 50.000 -5.562 
55.019 7.203 54.981 -5.013 
60.035 6.524 59.965 -4.382 
65.047 5.751 64.953 -3.691 
70.053 4.906 69.947 -2.962 
75.055 • 4.014 74.945 -2.224 
80.051 3.105 79.949 -1.513 

I 
85.043 2.213 84.957 -.867 
90.030 1.368 89.970 -.334 
95.014 .616 94.986 .016 

100.000 0 100.000 0 

L, E. radius: 1.087 
Slope of radius through L. E.: 0.0842 

L. E. radius: 1.087 
Slope of radius through L. E.: 0.1685 

L. E. radius: 1.594 L. E. radius: 1.594 
Slope ofradius through L. E.: 0.0842 , 

NACA 632-41 5 
Stations and ordinates given in percent of 

airfoil chord] 

Upper surface Lower surface' 

Station Ordinate Station Ordinate 
------------

0 0 0 0 
.300 1.287 .700 -1.087 
.525 1.585 .975 -1.305 
.991 2. 074 1.509 -1.646 

2.198 2.964 2.802 -2.220 
4.660 4.264 5.340 -3 .. 000 
7.147 5.261 7.853 -3:565 , I 
9.647 6.077 10.353 -4.009 

14.669 7.348 15.331 -4.656 
19.705 8279 20.295 -5.095 
24.750 8.941 25.250 -5.361 
29.800 9.362 30.200 -5.474 
34.852 9.559 35.148 -5.439 
39.C05 9.527 40.095 -5.243 
44.955 9.289 45.045 -4.909 
50.000 8.871 50.000 -4.459 I 55.039 8.298 54.961 -3.918 
60.070 7.595 59.930 -3."311 
65.093 6.780 64.907 -2.660 
70.106 5.877 69.894 -1.989 
75.109 4.907 74.891 -1.327 
80.102 3.900 79.898 -.716 , 

85.085 2.885 84.915 -.193 
90.059 1.884 89.941 .184 
95.028 .931 94.972 .333 I 

100.000 0 100.000 0 

L. E. radius: 1.594 
SlopeofradiusthroughL. K: 0.1685 

NACA 6~2-615' NACA 633-01 8 NACA 633-21 8 NACA 633-41 8 NACA 633-61 8 
[Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of 

' airfoil chord] airfoil chord] , airfoil chord] airfoil chord] airfoil chord] 

Upper surface I I'()wer surface 

Station Ordinate Station Ordinate 

Upper surface Lower surface. I 

Station Ordinate Station Ordinate 

Upper surface Lower surface 

Station Ordinate Station Ordinate 

Upper surface Lower surface 
I 

Station Ordinate Station Ordinate 

Upper surface Lower surface 

Station 
, 

Station Ordinate Ordinat~ 
--- ------ -------------- -------------- -------------

0 0 0 0 
.205 1.317 .. 795 -1.017 
.418 1.634 1.082 -1.214 
.866 2.159 1.634 -1. 517 

2.050 3.129 2.950 -2.013 
4. 492 4.560 5.508 -2. 664 
6.973 5.667 8.027 -3.123 
9.473 6.578 10.527 -3.476 

14. 504 8.010 15.496 -3.972 
19. 558 9.066 20.442 -4.290 
24.625 9.830 25.375 -4.460 
29.700 10.331 30.300 -4.499 
34.778 10.587 35.222 -4.407 
39.857 10.598 40.143 -4.172 
44.932 10.384 45.068 -3.814 
50.000 9.974 50.000 -3.356 
55.058 9.393 54.942 -2.823 
60.105 8.665 59.895 -2.239 
65.139 7.809 64.861 -1. 629 
70.159 6.847 69.841 -1.015 
75.163 5.800 74.837 -.430 
80.153 4.693 79.847 .083 
85.127 3.555 84.873 .483 
90.089 2.398 89.911 .704 
95.042 ' 1.245 94.958 .651 

100.000 0 100.000 0 

0 0 0 0 
.5 1.404 .5 -1.404 
.75 1.713 .75 -1.713 

1.25 2.217 1.25 -2.217 
2.5 3.104 2.5 -3.104 

, 5.0 4.362 5.0 -4.362 
7.5 5.308 7.5 -5.308 

10 6.068 10 -6.068 
15 7.225 15 -7.225 
20 8.048 20 -8.048 
25 8.600 25 -8.600 
30 8.913 30 -8.913 
35 9:000 35 -9.000 
40 8.845 40 -8.845 
45 8.482 45 -8.482 
50 7.942 50 -7.942 
55 7.256 55 -7.256 
60 6.455 60 -6.455 
65 5.567 65 -5.567 
70 4.622 70 -4.622 
7., 3.650 75 -3.650 
80 2.691 80 -2.691 
85 1. 787 85 -1. 787 
90 .985 90 -.985 
95 .348 95 -.348 

100 0 100 0 

0 0 0 0 
.382 1.449 .618 -1.349 
.617 1.778 .88.3 -1.638 

1.096 2.319 1.404 -2.105 
2.319 3.285 2.681 -2.913 
4.796 4.673 5.204 -4.041 
7.288 5.728 7.712 -4.880 
9.788 6.581 10.212 -5.547 

14.801 7.895 15.199 -6.549 
19.822 8.842 20.178 -7.250 
24.850 9.494 25.150 -7.704 
29.880 9.884 30.120 -7.940 
34.911 10.030 35.089 -7.970 
39.943 9.916 40.057 -7.774 
44.973 9.577 45.027 -7.387 
50.000 9.045 50.000 -6.839 
55.023 8.351 54.977 -6.161 
60.042 7.526 59.958 -5.384 
65.055 6.597 64.945 -4.537 
70.062 5.594 69.938 -3.650 
75.064 4.544 74.936 , -2.754 
80.059 3.486 79.941 .-1.894 
85.049 2.459 84.951 -1.113 
90.034 1. 501 89.966 -.467 
95.016 .664 94.984 -.032 

100.000 0 100.000 0 

0 0 0 0 
.267 1.484 .733 -1. 284 
.487 1.833 1.013 -1. 553 
.945 2.410 1.555 -1.982 

2.140 3.455 2.860 -2.711 
4:59.3 4.975 5.407 -3.711 
7.077 6.139 7.923 -4.443 
9.577 7.087 10.423 -5.019 

14.602 8.560 15.398 -5.868 
19.645 9.632 20.355 -6.448 
24.699 10.385 25.301 -6.805 
29.760 10.854 30.240 -6.966 
34.823 11.058 35.177 -6.938 
39.886 10.986 40.114 -6.702 
44.946 10.1\72 45.054 -6.292 
50.000 10.148 50.000 -5.736 
55.046 9.446 54.954 -5.066 
60.083 8.596 59.917 -4.312 
'65.110 7.626 64.890 -3.506 
70.125 6.564 69.875 -2.676 
75.128 5.438 74.872 -1.&18 
80.119 4.280 79.881 -1.096 
85.099 3.130 84.901 -.438 
90.069 2.017 89.931 .051 
95.032 .978 94.968 .286 

100.000 0 100.000 0 

0 0 0 0 
.156 1.511 .844 -1.211 
.a61 1. 878 1.139 -1.458 
.797 2.491 1. 703 -1.849 

1.965 3.616 3.035 -2.500 
4.393 5.268 5.607 -3.372 
6.868 6.542 8.132 -3.998 
9.367 7.586 10.63.3 -4.484 

14.404 9.219 15.596 -5.181 
19.469 10.418 20.531 -5.642 
24.549 11. 273 25.451 -5.903 
29.640 11.822 30.360 -5.990 
34.734 12.086 35.266 -5.906 
39.829 12.0.16 40.171 -5.630 
44.919 11.767 45.081 -5.197 
50.000 1l.251 50.000 '-4.6.33 
55.069 19. 541 54.931 -3.971 
60.125 9.667 59.875 -3.241 
65.164 8. 655 64.836 -2.475 
70.187 7.534 69.813 -1.702 
75.191 6.330 74.809 -.960 
SO. 178 5.073 79.822 -.297 
85.147 3.800 84.853 .238 
90.103 2.531 89.897 .571 
95.048 1. 293 94.952 .603 

100.000 0 100.000 0 
I 

L. E. radius: 1.594 
Slope Qfradius through L. E.: 0.2527 

L. E. radius: 2.120 
I --

L. K radius: 2.120 
Slope of radius through L. E.: 0.0842 

L. E. radius: 2.120 
Slope of radius through L,K: 0.1685 

L. E. radius: 2.120 
Slope of radius through L. E.: 0.2527 
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U2 
c:l 
~ 
~ 
~ 
><: 
o 
>rj 

:> ..... 
;0 
"1 
o ..... 
t" 
C; 
:> ..., 
:> 

I-'-

8 



NACA 634-021 NACA 634-221 NACA 634-421 NACA 64-006 NACA 64-009 
[Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of 

airfoil chord] airfoil chord] airfoil chord] airfoil chorli] airfoil chord] 

Upper surface Lower surface 
---------

~persurf~1 Lower surface Upper surface Lower surface Upper surface Lower surface I Upper surface Lower surface 

Station Ordinate Station Ordinate Station Ordinate Station Ordinate Station Ordinate Station Ordinate Station Ordinate Statiou Ordiilate Station Ordinate Station Ordinate 

------------- -------------- -------------- -------------- -------------
0 0 0 0 

I .5 1.583 .5 -1.583 
.75 I. 937 .75 -1.937 

I. 2.5 2.527 I. 2.'; -2.527 
2.5 3.577 2.5 -3.577 I 
5.0 5.065 5.0 -5.065 
7.5 6.182 7.5 -6.182 

10 7.080 10 -7.080 
15 8.441 15 -8.441 
20 9.410 20 -9.410 
25 10.053 25 -10.053 
30 10.412 30 -10.412 
35 10.500 35 -10.500 

I 
40 10.298 40 -10.298 
45 9.854 45 -9.854 
50 9.206 50 -9.206 
55 8.390 55 -8.390 

i 
60 7.441 60 -7.441 
65 6.396 65 -6.396 
70 5.290 70 -5.290 
75 4.160 75 -4.160 

I 
80 3.054 80 -3.054 
85 2.021 85 -2.021 
90 I. 113 90 -1.113 
95 .392 95 -.392 

100 0 100 0 

0 0 0 0 
.367 1.627 .6.'l3 -1.527 
.600 2.001 .900 -1.861 

I. 075 2.628 1.425 -2.414 
2.292 3.757 2.708 -3.385 
4.763 5.375 5.237 -4.743 
7.253 6.601 7.747 -5.75.'l 
9.75.'l 7.593 10.247 -6.559 

14.767 9.111 15.233 -7.765 
19.792 10.204 20.208 -8.612 
24.824 10.946 25.176 -9.156 
29.860 11.383 30.140 -9.439 
34.897 11.529 35.103 -9.469 
39.934 11. 369 40.066 -9.227 
44.969 10.949 45.031 -8.759 
50.000 10.309 50.000 -8.103 
55.027 9.485 54.973 -7.295 
60.048 8.512 59.952 -6.370 
65.063 7.426 64.937 -5.366 
70.071 6.262 69.929 -4.318 
75.073 5.054 74.927 -3.264 
80.067 3.849 79.933 . -2.257 
85.056 2.693 84.944 -1.347 
90.039 1.629 89.961 -.595 
95.018 .708 94.982 -.076 

100.000 0 100.000 0 

0 0 0 0 
.237 I. 661 .763 -1.461 
.452 2.054 1.048 -1. 774 
.902 2.717 1. 598 -2.289 

2.086 3.925 2.914 -3.181 
4.527 5.675 5.473 -4.411 
7.007 7.010 7.993 -5.314 
9.506 8.097 10.494 -6.029 

14.535 9.774 15.465 -7.082 
19.585 10.993 20.415 -7.809 
24.649 11.837 25.351 -8.257 
29.719 12.352 30.281 -8.464 
34.793 12.558 35.207 -8.438 
39.867 12.439 40.133 -8.155 I 
44.937 12.044 45.063 -7.664 
50.000 11. 412 50.000 -7.000 
55.054 10.580 54.946 -6.200 
60.096 9.582 59.904 -5.298 
65.126 8.455 64.874 -4.335 
70.143 7.232 69.857 -3.344 
75.145 5.947 74.855 -2.367 
80.135 4.643 79.865 -1.459 
85.111 3.364 84.889 -.672 
90.078 2.144 89.922 -.076 
95.037 I. 022 94.963 .242 

100.000 0 100.000 0 

0 0 0 0 

I 
.50 .494 .50 -.494 
.75 .596 .75 -.596 

I. 25 .754 I. 25 -.754 
2.5 1.024 2.5 -1.024 
5.0 1.405 5.0 -1.405 

i 7.5 1. 692 7.5 -1.692 
10 1.928 10 -1.928 
15 2.298 15 -2.298 
20 2.572 20 -2.572 
25 2.772 25 -2.772 
30 2.907 30 -2.907 

I 

35 2.981 35 -2.981 
40 2.995 40 -2.995 
45 2.919 45 -2.919 
50 2.775 50 -2.775 
55 2.575 55 -2.575 
60 2.331 60 -2.331 
65 2.050 65 -2.050 
70 1. 740 70 -1.740 
75 1.412 75 -1.412 
80 1.072 80 -1.072 
85 .737 85 -.737 
90 .423 90 -.423 
95 .157 95 -.157 

100 0 100 0 

0 0 0 0 
.50 .739 .SO -.739 
.75 .892 .75 -.892 

1.25 1.128 1.25 -1.128 
2.5 1.533 2.5 -1.533 
5.0 2.109 5.0 -2.109 
7.5 2.543 7.5 -2.543 

10 2.898 10 -2.898 
15 3.455 15 -3.455 
20 3.868 20 -3.868 
25 4.170 25 -4.170 
30 4.373 30 -4.373 
35 4.479 35 -4.479 
40 4.490 40 -4.490 
45 4.364 45 -4.364 
50 4.136 50 -4.136 
55 3.826 55 -3.826 
60 3.452 60 -3.452 
65 3.026 65 -3.026 
70 2.561 70 -2.561 
75 2.069 75 -2.069 
80 1.564 80 -1. 564 
85 1.069 85 -1.069 
90 .611 90 -.611 
95 .227 95 -.227 

100 0 
1

100 0 

L. E. radius: 2.650 L. E. radius: 2.650 
Slope of radius through L. E.: 0.0842 I 

L. E. radius: 2.650 

I 
Slope of radius through L. E.: 0.1685 

--

L. E. radius: 0.256 L. E. radius: 0.579 

NACA 64-1 08 NACA 64-1 1 0 NACA 64-206 NACA 64-208 NACA 64-209 
[Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of 

airfoil chord] airfoil chord] airfoil chord] airfoil chord] airfoil chord} 

Upper surface Lower surface Upper surface Lower surface Upper surface Lowrr surface Upper surface Lower surface Upper surface Lower surface 

--------
Station Ordinate Station Ordinate 
---------------

Station Ordinate Station Ordinate 
--------------

Station Ordinate Station Ordinate 
-------

Station Ordinate Station Ordinate 
-------------

Station Ordinate Station Ordinate 

-------------

0 0 0 0 
.472 .682 .528 -.632 
.719 .828 .781 -.758 

1. 215 1.058 1. 285 -.950 
2.460 1.457 2.540 -1.271 
4.956 2.032 5.044 -1.716 
7.455 2.471 7. ,545 -2.047 
9.955 2.832 10.045 -2.316 

14.958 3.405 15.042 -2.733 
19.962 3.8.% 20.038 -3.039 
24.968 4.152 25.032 -3.256 
29.974 4.370 30.026 -3.398 
34.980 4.494 35.020 -3.464 
39.987 4.528 40.013 -3.456 
44.994 4.431 45.006 -3.335 
50.000 4.236 50.000 -3.132 
55.005 3.959 ,54.995 -2.86.'l 
60.010 3.617 59.990 ·-2.545 
65.013 3.219 64.987 ':"2.189 
70:015 2.777 69.985 -1.805 
75.016 2.302 74.984 -1.406 
80.015 1.802 79.985 -1.006 
85.013 1. 297 84.987 -.625 
90.010 .808 89.990 -.292 
95.005 .364 94.995 -.048 

100.000 0 100.000 0 

0 0 0 0 
.465 .844 .535 -.794 
.712 I. 02.'l .788 -.953 

I. 207 1.303 1. 293 -1. 195 
2.450 I. 793 2.550 -1.607 
4.945 2.500 5.055 -2.184 
7.443 3.037 7.557 -2. Ill;) 
9.944 3.479 10.056 -2.96.'l 

14.947 4.178 15.053 -3.506 
19.953 4.700 20.047 -3.904 
24.959 5.087 25.041 -4.191 
29.967 5.350 30.033 -4.378 
34.975 5.495 35.025 -4.465 
39.984 5.524 40.016 -4.452 
44.992 5.391 45.008 -4.295 
50.000 5.138 50.000 -4.034 
55.007 4.786 54.993 -3.690 
60.012 4.356 59.988 -3.284 
65.016 3.860 64.984 -2.830 
70.019 3.313 69.981 -2.341 
75.020 2.729 74. g80 -1.833 
80.019 2.120 79.981 -1.324 
85.016 1.512 84.984 -.840 
90.012 .929 89.988 -.413 
95.006 .406 94.994 -.090 

100. 000 0 100.000 0 

0 0 0 0 
.459 .542 .541 -.442 
.704 .664 .796 - . .524 

I. 198 .859 1.302 -.645 
2.440 1. 208 2.560 -.836 
4.934 1. 719 5.066 -1.087 
7.432 2. Il5 7.568 -1. 267 
9.933 2.444 10.067 -1.410 

14.937 2.970 15.06.'l -1.624 
19.943 3. :367 20.057 -I. 775 
24.952 3.667 25.048 -1.877 
29.961 3.879 :lO.039 -1. 935 
34.971 4. OIl 35.029 -I. 951 
39.981 4.066 40.019 -1.924 
44.991 4.014 45.009 -1.824 
50.000 3.878 50.000 -1.672 
55.008 3.670 54.992 -1.480 
60.015 3.402 59.985 -1.260 
65.020 3.080 64.980 -1.020 
70.023 2.712 69.977 -.768 
75.025 2.307 74.975 -.517 
80.024 1.868 79.976 -.276 
85.020 1.410 84.980 -.064 
90.015 .940 89.985 .094 
95.007 .473 94.993 .159 

100.000 0 100.000 0 

0 0 0 0 
.445 .706 .555 -.606 
.688 .862 .812 -.722 

i 
1.180 1.110 1.320 -.896 
2.421 1.549 2.579 -1.177 
4.912 2.189 5.088 -1.557 
7.410 2.681 7.590 -1.833 
9.909 3.089 10.091 -2.055 

14.915 3.741 15.085 -2.395 
19.924 4.232 20.076 -2.640 
24.935 4.598 25.065 -2.808 
29.948 4.856 30.052 -2.912 
34.961 5.009 35.039 -2.949 
39.974 5.063 40.026 -2.921 
44.988 4.978 45.012 -2.788 
50.000 4.787 SO. 000 -2.581 
55.011 4. S06 54.989 -2.316 
60.020 4.152 59.980 -2.010 
65.027 3.733 64.973 -1.673 
70.031 3.263 69.969 -1.319 
75.032 2.749 74.968 -.959 
80.031 2.200 79.969 -.608 
85.027 1.634 84.973 -.288 
90.019 1.067 89.981 -.033 
95.010 .522 94.990 .UO 

100.000 0 100.000 0 

0 0 0 0 
.438 .786 .562 -.686 
.680 .959 .820 -.819 

1.172 1. 2,~2 1.328 -1.018 
2.411 1. 716 2.589 -1.344 
4.901 2.423 5.099 -1.791 
7.398 2.965 7.602 -2.117 
9.899 3.413 10.101 -2.379 

14.905 4.127 15.095 -2.781 
19.915 4.66.'l 20.085 -3.071 
24.927 5.064 25.073 -3.274 
29.941 5.345 30.059 -3.401 
34.956 5.509 35.044 -3.449 
39.971 5.561 40.029 -3.419 
44.986 5.459 45.014 -3.269 
50.000 .5.239 50.000 -3.033 
55.012 4.921 54.988 -2.731 
60.022 4.523 59.978 -2.381 
65.030 4.056 64.970 ~1.996 

70.035 3.533 69.965 ~1.589 

75.036 2.964 74.964 -1.174 
SO. 035 2.360 79.965 -.768 
85.030 1. 742 84.970 -.396 
90.021 1.128 89.979 -.094 
95.011 .543 94.989 .089 

100.000 0 100.000 0 

I 

1,. E. radius: 0.455 
Slope of radius through L. E.: 0.042 

L. E. radius: 0.720 
Slope of radius through L. E.: 0.042 

L. E. radius: 0.256 
Slope of radius through L. E.: 0.084 

L. E. radius: 0.455 
Slope of radius through L. E.: 0.084 

L. E. radius; 0.579 I Slope of radius through L. E.: 0.084 
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NACA 64-210 NACA 641-012 NACA 641-112 NACA 641-212 NACA 641-412 
[Stations and ordinates ~iven in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of 

airfoil chord] airfoiLchord] airfoil chord] airfoil chord] airfoil chord] 

Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface 

------
Station Ordinate Station Ordinate Station Ordinate Station Ordinate Station Ordiriate Station Ordinate Station Ordinate Station Ordinate Station Ordinate Station Ordinate 

------------- ------------ ---------- -------------- -------------
0 0 0 0 
.431 .867 .569 -.767 
.673 1.056 .827 -.916 

1.163 1.354 1.337 -1.140-
2.401 1.884 2.599 -1.512 
4.890 2.656 5.110 -2.024 
7.387 3.248 7.613 -2.400 
9.887 3.736 10.113 -2.70.2 

14.894 4.514 15.106 -3.168 
19.905 5.097 20.0.95 -3.505 
24.919 5.533 25.A81 -3.743 
29.934 5.836 30..066 -3.892 
34.951 6.010. 35.0.49 -3.950 
39.968 6.059 40.032 -3.917 
44.985 5.938 45.0.15 -3.748 
50.000 5.689 50.000 -3.483 
55.0.14 5.333 54.987 -3.143 

-60.025 4.891 59.975 -2.749 
65.033 4.375 64.967 -2.315 
70.038 3.799 69.962 -1.855 
75.040 3.176 74.960 -1.386 
80.038 2.518 79.962 -.926 
85.033 1.849 84.968 -.503 
90.0.24 1.188 89.977 -.154 
95.012 .564 94.988 .068 

100.000 0. 100.000 0. 

0 0. 0. 0 
.5 .978 .5 -.978 
.75 1.179 _ .75 -1.179 

1.25 1.490 1.25 -1.490 
2.5 2.035 2.5 -2.0.35 
5.0 2.810 5.0. -2.810 
7.5 3.394 7.5 -3.394 

10 3.871 10 -3.871 
15 4.620 15 -4.620 
20 5.173 20 -5.173 
25 5.576 25 -5.576 
30 5.844 30. -5.844 
35 5.978 35 -5.978 
-40 5.981 40 -5.981 
45 5.798 45 -5.798 
50 5.4SO 50 -5.480 
55 5.056 55 -5.056 
60 4.048 60. -4.048 
65 3.974 65 -3.974 
70. 3.350 70 -3.350 
75 2.695 75 -2.695 
SO 2.0.29 SO -2.0.29 
85 1. 382 85 -1.382 
90 .786 90 -.786 
95 .288 95 -.288 

100 0 100 0 

0 0 0 0. 
- .459 1.002 .541 -.952 

.704 1.213 .796 -1.143 
1.198 1.543 1.302 -1.435 
2_441 2.127 2.559 -1. 941 
4.934 2.967 5.0.66 -2.651 
7.432 3.605 7.568 -3.181 
9.932 4.128 10.068 -3.612 

14.936 4.956 15.0.64 -4.284 
19.943 5.571 20.0.57 -4.775 
24.951 6.0.24 25.0.49 -5.128 
29.961 6.330. 30..0.39 -5.358 
34.971 6.493 35.0.29 -5.463 
39.981 6.517 40.019 -5.445 
44.991 6.346 45.009 -5.250 
50.0.00 . 6.0.32 50.000 -4.928 
55.008 5.604 04.992 -4.508 
60.015 5.084 59.985 -4.0.12 
65.020 4.489 .64.9SO -3.459· 
70..023 3.836 69.977 -2.864 
75.0.24 3.143 74.976 -2.247 
SO. 022 2.427 79.978 -1.631 
85.0.19 _ 1. 718 84.981 -1.046 
90.014 1.044 89.986 -.528 
95.007 .446 94.993 -.130 

100.000 0. 100..0.00 0 

0 0. 0 0 
.418 1.0.25 .582 -.925 
.659 1.245 .841 -1.105 

1.147 1.593 1. 353 -1.379 
2.382 2.218 2.618 -1.846 
4.868 3.123 5.132 -2.491 
7.364 3.815 7.636 -2.967 
9.865 4.386 10.135 -3.352 

14.872 5.291 15.128 -3.945 
19.886 5.968 20.114 -4.376 
24.903 6.470 25.0.97 -4.680-
29.921 6.815 30.0.79 -4.871 
34.941 7.008 35.0.59 ~4._948 

3R 961 7.0.52 40.0.39 -4.910 
44.982 6.893 45.0.18 -4.70.3 
50.000 6.583 50.000 -4.377 
55.0.16 6.151 04.984 -3.961 
60.0.29 5.619 59.971 -3.477 
65.0.39 5.004 64.961 -2.944 
70..045 4.322 69.955 -2.378 
75.047 3.590 74.953 -1.SOQ 
80..045 2.825 79.955 -1.233 
85.0.38 2.0.54 84.962 -.7C8 
90.0.27 1.303 89.973 -.269 
95.0.13 .60.4 94.987 .0.28 

10.0..000 0 100.0.0.0. 6 

0. 0. 0. 0. 
.338 1.0.64 .662 -.864 
.569 1. 305 .931 -1.025 

1.045 1.690 1. 455 -1.262 
2.264 2.393 2.736 -1.649 
4.738 3.430 5.262 -2.166 
7.229 4. 231 7.771 -2.535 
9.730 4.896 10..270. -2.828 

14.745 5.959 15.255 -3.267 
19.772 6.760 20.228 -3.576 
24.S05 7.363 25.195 -3.783 
29.842 7.786 30.158 -3.898 
34.882 8.0.37 35.118 -3.917 
39.923 8.123 40.0.77 -3.839 
44.968 7.988 45.0.37 -3.608 
50.000 7.686 50.000 -3.274 
5.5.0.32 7.246 54.968 -2.866 
60.0.59 6.690 59.941 -2.406 
65.0.78 6.0.33 64.922 -1.913 
70..0.90 5.293 69.910 -1.405 
75.0.94 4.483 74.906 -.903 
80.0.89 3.619 79.911 -.435 

. 85.0.76 2.722 84.924 -.0.38 
90.0.55 1.818 89.945 .250 
95.0.27 .919 94.973 .345 

100..000 0. tQQ.QOO 0. 

L. E. radius: 0..720 
Slope of radius through L. E.: 0.084 

L. E. radius: 1.0.40 L. E. radius: 1.040 I 
Slope of radius through L. E.: 0.042 

L. E. radius: 1.0.40. 
Slope of radius through L. E.: Q.Q~4 

L. E. radius: 1.0.40 
Slope of radius through L. E.: 0.168 

- --

NACA 642-015 NACA ~642-215 NACA 642-415 NACA 643-018 NACA 643-218 
[Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordipates given in percent of 

airfoil chord] airfoil chord] airfoil chord] airfoil chord) - airfoil chord) 

Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface 

Station Ordinate Station Ordinate 
------

Station Ordinate Station Ordinate 
-------------

Station Ordinate Station Ordinate 
------------

Station \ Ordinate Station Ordinate Station Ordinate Station Ordinate 
-------------

0 0. O. 0. 
.50. 1.208 .50 -1.208 
.75 1. 456 .75 -1.456 

1.25 1.842 1. 25 -1.842 
2.5 2.528 2.5 -2.528 
5.0. 3.50.4 5.0. -3.504 
7.5 4.240. 7.5 -4.240. 

10 4.842 10 -4.842 
15 5.785 15 -5.785 
20. 6.480. 20 -6.480. 
2S 6.985 25 -6.985 
30. 7.319 30. -7.319 
3" 7.482 35 -7.482 
40. 7.473 40 -7.473 
45 7.224 45 -7.224 
50. 6.810 50. -6.810. 
55 6.266 55 -6.266 
60. 5.620. 60. -5.620. 
65 4.895 65 -4.895 
70. 4.113 70. -4.113 
75 3.296 75 -3.296 
SO 2.472 80. -2.472 
85 1. 677 85 -1.677 
90 .950. 90. -.950 
95 .346 95 

'j 100 0. 100 

L. E. radius: 1.590 

0. 0. 0 0. 
.399 1. 254 .601 -1.154 
.637 1.li22 .863 -1.382 

1.122 1. 945 1. 378 -1. 731 
2.353 2.710. 2.647 -2.338 
4.836 3.816 5.164 -3.184 
7.331 4.661 7.669 -3.813 
9.831 5.356 10.169 -4.322 

11.840. 6.456 15.160 -5.110 
19.857 7.274 20.143 -5.682 
24.878 7.879 25.122 -6.0.89 
29.90.1 8.290. 30.099 -6.346 
34.926 8. 512 35.0.74 -6.452 
39.952 8.044 40..048 -6.40.2 
44.977 8.319 45.0.23 -6.129 
SQ. 000 7.913 50.000 -5.70.7 
55.0.20 7.361 04.980. -5.171 
60..0.36 6.691 59.964 -4.549 
65.048 5.925 64.952 -3.865 
70.0.55 5.0.85 69.945 -3.141 
75.058 4.191 74.942 -2.401 
SO. 0.55 3.267 79.945 -1.675 

----sir.-ll46- 2.349 84.954 -1.003 
90..033 1. 466 ·89.967 -.432 
95.0.16 .662 94.984 -.0.30. 

100.000 0. 100.000 0 

L. E. radius: 1.590. 
Slope of radius through L. E.: 0.0.84 

0 0. 0. 0. 
.299 1. 291 .70.1 -1.0.91 
.526 1.579 .974 -1.299 
.996 2.0.38 1.504 -1.610 

2.207 2.883 2.793 -2.139 
4.673 4.121 5.327 -2.857 
7.162 5.0.75 7.838 -3.379 
9.662 5.864 10..338 -3.796 

14.681 7.122 15.319 -4.430. 
19.714 8.0.66 20.286 -4.882 
24.756 8.771 25.244 -5.191 
29.S03 9.260. 30..197 -5.372 
34.853 9.041 35.147 -5.421 
39.90.4 9.614 40..0.96 -5.330. 
44.954 9.414 45.046 -5.0.34 
50..000. 9.0.16 50..000 -4.60.4 
55.0.40. 8.456 04.960. -4.0.76 
60..0.72 7.762 59.928 -3.478 
65.0.96 6.954 64.904 -2.834 
70..111 6.055 69.889 -2.167 
75.115 5.0.84 74.885 -1.50.4 
80.10.9 4.0.62 79.891 -.878 
81i.Q92 3.0.20. 84.908 -.328 
90.066 1. 982 89.934 .0.86 
95.0.32 .976 94.968 .288 

100.000 0. 100.000 0 

L. E. radius: 1.590 I 
Slope of radius through L. E.: 0..168 

I 

0. 0. 0. 0. 
.50 1.428 .50. -1.428 
.75 1. 720. .75 -1.720. 

1,25 2.177 1. 25 -2.177 
2.5 3.0.05 2.5 -3.005 
5.0. 4.186 5.0. -4.186 
7.5 5.0.76 7.5 -5.0.76 

lO 5.803 10. -5.S03 
15 6.942 15 -6.942 
20 7.782 20. -7.782 
25 8.391 25 _8.391 
30. 8.789 30. -8.789 
35 8.979 35 -8.979 
40. 8.952 40. -8.952 
45 8.630 45 -8.630. 
50. 8.114 50. -8.114 
55 7.445 55 -7.445 
50 6.658 60 -6.658 
65 5.782 65 -5.782 
70. 4.842 70. -4.842 
75 3.866 75 -3.866 
80. 2.888 80. -2.888 
85 1.951 85 -1.951 
90. 1.101 90 -1.10.1 
95 .400. 95 -.400. 

100 0 100. 0. 

L. E. radius: 2.208 
--

0. 0. 0. 0 
.380. 1. 473 .620 -1.373 
.617 1. 785 .883 -1. 645 

1.0.99_ 2.279 1.401 -2.0.65 
2.325 3.186 2.675 -2.814 
4.804 4.497 5.196 -3.885 
7.297 5.496 7.70.3 -4.-648 
9.797 6.316 10.203 -5.282 

14.808 7.612 15.192 -6.266 
19.828 8.576 20.172 -6.984 
24.853 9.285 25.147 -7.495 
29.881 9.750 30.119 -7.816 
34.912 10.009 35.0.88 -7.949 
39.942 10.0.23 40..0.58 -7.881 
44.972 9.725 45.028 -7.535 
50.000 9.217 50..000 -7.0.11 
55.0.24 8.040. 54.976 -6.350 
60.0.43 7.729 59.957 -5.587 
65.0.57 6.812 64.943 -4.752 
70..065 5.814 69.935 -3.870. 
75.0.68 4.760 74.932 -2.970 
80.0.64 3.683 79.936 -2.0.91 
85.0.54 2.623 84.946 -1.277 
90.0.38 1. 617 89.962 -.583 
95.019 .716 94.981 -.0.84 

100.000 0. 100.000 0. 

L. E. radius: 2.208 

I Slope of radius through L. E.: 0..0.84 

- ------- -- - --
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NACA 643-418 NACA 643-61 8 NACA 644-021 
[Stations and ordinates given in percent 0 r [Stations and ordinates given in percent of [Stations and ordinates given in percent of 

airfoil chord] . airfoil chord] airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station ordinate-

--------
0 0 0 0 

.26.3 1. 508 .737 -1.308 

.486 I. 840 1.014 -1.560 

.950 2.370 1.550 -1. 942 
2.152 3.357 2.848 -2.613 
4.609 4.800 5.391 -3.536 
7.095 5.908 7.905 -4.212 
9.595 6.823 10.405 -4.755 

14.(iJ7 8.277 15.383 -5.585 
19.657 9.366 20.343 -6.182 
24.707 10.176 25.293 -6.596 
2<J.763 10.730 30.237 -6.842 
34.823 11. 037 35.177 -6.917 
39.885 11.093 40.115 -6.809 
44.945 10.820 45.055 -6.440 
50.000 10.320 50.000 -5.908 
55.047 9.635 54.953 -5.255 
60.086 8. 799 59.914 -4.515 
65.114 7.841 64.886 -3.721 
70.131 6.784 69.869 -2.896 
75.135 5.654 74.865 -2.074 
80.127 4.477 79.873 -1.293 
85. 108 I 3.294 84.892 -.602 
90.077 2. 132 89.923 -.064 
95.037 1. 030 94.963 .234 

100.000 0 100.000 0 

L. E. radius: 2.208 
Slope of radius through L. E.: 0.168 

NACA 65,3-018 
[Stations and ordinates given in percent of 

airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
-------------

0 0 0 0 
.5 1.324 .5 -1.324 
.75 1.599 .75 -1..199 

I. 25 2.004 1. 25 -2.004 
2.5 2.728 2.5 -2.728 
5.0 3.831 5.0 -3.831 
7.5 4.701 7.5 -4.701 

10 5.424 10 -5.424 
15 6.568 15 -6.568 
20 7.434 20 -7.43t 
25 8.093 25 -8.093 
30 8.568 30 -8.568 
3" 8.868 35 -8.8flS 
40 8.990 40 -8.990 
45 8.916 45 -8.916 
50 8.593 50 -8.593 
55 8.045 55 -8.045 
60 7.317 60 -7.317 
65 6.450 65 -6.450 
70 5. 4~6 70 -5.486 
75 4.456 75 -4.456 
80 3.390 80 -3.390 
85 2.325 85 -2.325 
90 1.324 90 -1.324 
95 .492 95 -.492 

100 0 100 0 

L. E. radius: 1.92 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
-------------

0 0 0 0 
.150 1. 534 .850 -1.234 
.359 I. 885 1.141 -1. 465 
.805 2.452 1. 695 -I. 810 

I. 982 3.518 3.018 -2.402 
4.417 5.093 5.583 -3.197 
6.895 6.312 8.105 -3.768 
9.395 7.322 10.605 -4.220 

14.427 8. 937 15.573 -4.899 
19.486 10.153 20.514 -5.377 
24.560 11.065 25.440 -5.695 
29.645 11. 698 30.355 -5.866 
34.735 12.065 35.265 -5.885 
39.827 12.163 40.173 -5.737 
44.917 1l.915 45.083 -5.345 
50.000 11.423 50.000 -4.805 
55.071 10.730 54.929 -4.160 
60.129 9.870 59.871 -3.444 
n.1.171 8.870 64.829 -2.690 
70.196 7.754 69.804 -1.922 
75.203 6.544 74.797 -I. 174 
80.191 5.270 79.809 -.494 
85.161 3.963 84.839 .075 
90.115 2.646 89.885 .456 
95.056 1. 344 94.944 .552 

100.000 () 100.000 0 

L. E. radius: 2.208 
Slope of radius through L. E.: 0.253 

NACA 65,3-418 
a=0.8 

[Stations and ordinates given in percent of 
airfoil chordj 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
---------------

0 0 0 0 
.248 1. 416 .752 -1.184 
.467 1.736 1.033 -1.412 
.931 2.224 1.569 -I. 732 

2.131 3.133 2.869 -2.273 
4.578 4.542 5.422 -3.074 
7.053 5.672 7.947 -3.688 
9.544 6.617 10.456 -4.193 

14.558 8.149 15.442 -4.957 
19.592 9.319 20.408 -5.527 
24.641 10.233 25.359 -5.937 
29.700 10.909 30.300 -6.217 
34.765 II. 369 35.235 -6.361 
39.8.35 11.600 40.165 -6.376 
44.932 U.602 45.068 -6.230 
49. 979 11.307 50.021 -5.879 
55.646 10.751 54.954 -5.339 
60.106 9.974 59.894 -4.658 
65.155 9.016 64.8·15 -3.880 
70.193 7.899 69.807 -3.067 
75.219 6.651 74.781 -2.251 
80.249 5.289 79.751 -1.473 
85.221 3.818 84.779 -.810 
90.135 2.289 89.865 -.345 
95.649 .930 94.951 -.050 

100.000 0 100.000 0 

L. E. radiu~: 1.92 
Slope of radius through L. E.: 0.194 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
--------------

0 0 0 0 
.50 1. 646 .50 -1.646 
.75 1.985 .75 -1.985 

1.25 2.517 1.25 -2.517 
2.5 3.485 2.5 -3.485 
5.0 4.871 5.0 -4.871 
7.5 5.915 7.5 -5.915 

10 6.769 10 -6.769 
Iii 8.108 15 -8.108 
20 9.095 20 -9.095 
25 9.807 25 -9.807 
30 10.269 30 -10.269 
35 10.481 35 -10.481 
40 10.431 40 -10.431 
45 10.030 45 -10:030 
50 9.404 50 -9.404 
55 8.607 55 -8.607 
60 7.678 60 -7.678 
65 6.649 65 -6.649 
70 5.549 70 -5.549 
75 4.416 75 -4.416 
80 3.287 80 -3.287 
8., 2.213 85 -2.213 
90 1.245 90 -1.245 
95 .449 95 -.449 

100 0 100 0 

L. E. radius: 2.884. 
I 

NACA 65,3-618 
[Stations and ordinates giwn in perc~nt of 

airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
--------------

0 0 0 0 
.176 1.434 .824 -1.134 
.387 1. 767 1.113 -1.347 
.R41 2.283 1.659 -1.641 

2.030 3.245 2.970 -2.129 
4.467 4.742 5.533 -2.846 I 
6.940 5.940 8.060 -3.396 ' 
9.434 6.945 10 . .566 -3.843 

14.458 8. 565 15.542 -4.527 
19.509 9.806 20.491 -5.030 
24.576 10.767 25.424 -5.397 
29.654 11. 477 30.346 -5.645 
34.738 11.954 35.262 -5.774 
39.826 12.201 40.174 -5.775 
44.915 12.201 45.085 -5.631 
50.000 11.902 50.000 -5.284 
55.077 11.330 54. Q23 -4.760 
60.142 10.529 59.858 -4.103 
65.191 9.537 64.809 -3.357 
70.222 8.398 6~. 778 -2.5f>6 
75.2.13 7.135 74.767 -1. 765 
SO. 224 5.771 79.776 -.995 
8.1.192 4.336 84.808 -.298 
90.138 2.868 89.862 .234 
95.068 1.435 94.932 .461 

100.000 0 100.000 0 

L. E. radius: 1.92 
Slope of radius through L. F.: 0.253 

- ---- -

NACA 644-221 NACA 644 .. 421 
[Stations and ordinates given in percent of [Stations and ordinates given in percent of 

airfoil chord] airfoil chord] 

Upper surface Lower surface J 

Station Ordinate Station ~rdinate I 
0 0 0 0 
.362 1.690 .6.38 -1.590 
.596 2.649 .904 -1.909 

1. 075 2.618 I. 425 -2.404 
2.297 3.665 2.703 -3.293 
4.772 5.182 5.228 -4.550 
7.264 6.334 7.736 -5.486 
9.763 7.282 10.237 -6.248 

14.776 8.778 15.224 -7.432 
19.799 9.889 20.201 -8.297 
24.829 10.701 25.17l -8 .. 911 
29.8t\1 '11.240 30.139 -9.296 
34.897 11.510 35.103 -9.450 
39.933 11. 502 40.067 -9.360 
44.968 11.125 45.032 -8.935 
50.000 10.507 50.000 -8.301 
55.027 9.702 54.973 -7.512 
60.050 8.749 59.950 -6.607 
65.065 7.679 64.935 -5.619 
70.075 6.521 69.925 -4.577 
75.077 5.310 74.92.3 -3.520 
80.073 4.082 79.927 -2.490 
85.061 2.885 84.939 -1.539 
90.044 1. 761 89.956 -.727 
95.021 .765 94.979 -.133 

100.000 0 100.000 0 
I 

L. E. radius: 2.884 
Slope of radius through L. E.: 0.084 

NACA 65(21 6)-41 5 
a=0.5 

[Stations and ordinates given in percent of 
airfoil chord] 

Upper surface Lower surface 

Station Ordinat, Stotion Ordinet, \ 
-------------

0 0 0 0 
.244 1.2.16 .7.56 -.960 
.469 1. 498 1.031 -1.110 
.930 1. 947 1.570 -1.359 

2.121 2.837 2.879 -1.801 
4.564 4.175 5.436 -2.411 
7.044 5.208 7.956 -2.832 
9.540 6.073 10.460 -3.169 

14.561 7.465 15.439 -3.673 
19.608 8.518 20.392 -4.022 
24.669 9.315 25.331 -4.267 
29.742 9.900 30.258 -4.428 
34.825 1().279 35.175 -4 .• 1;7 
30.916 10.467 40.084 -4.523 
45.019 10.438 44.981 -4.446 
50.153 10.131 49.847 -4.251 
55.263 9.512 54.737 -3.940 
60.305 8.645 59.695 -3.521 
65.308 7.575 64.692 -2.995 
70.281 6.373 69 .• 19 -2.409 
75.237 5.152 74.763 -1.848 
80.180 3.890 79.820 -1.278 
85.117 2.639 84.883 -.723 
00.062 I. 533 89.938 -.305 
95.020 .606 94.980 -.030 

100.000 0 100.000 0 

L. E. radius: 1.498 _ 
Slope of radius through .~~~ 0.233 

Upper surface Lower surface 

Station Ordinate Station I ordina~ 
--------

0 0 0 0 
.227 1.723 .773 -1.523 

I .445 2.101 1.055 -1.821 
.903 2.707 1.597 -2.27Q 

2.096 3.834 2.904 -3.090 
4.545 5.482 5.455 -4.218 
7.028 6.744 7.972 -5.048 
9.528 7.786 10.472 -5.718 

14.553 9.442 15.447 -6.750 
19.599 10.678 20.401 -, .. , I 24.657 11.591 25.343 -8.0n 
29.723 12.209 30.277 -8.321 
34.794 12.539 35.206 -8.419 
39.865 12.572 40.135 -8.288 
44.936 12.220 45.064 ":'7.840 
50.000 11.610 50.000 -7.198 
55.055 10.797 54.945 -6.417 
60.099 9.819 59.901 -5.535 
65.131 8.708 64.869 -4.588 
70.150 7.491 69.850 -3.603 
75.154 6.203 74.846 -2.623 
80.145 4.876 79.855 -1.692 
85.122 3.556 84.878 -.864 
90.087 2.276 89.913 -.208 
95.042 1.079 94.958

1 

.185 
100.000 0 100.000 0 

L. E. radius: 2.884 
Slope of radius through L. E.: 0.168 

---

NACA 65-006 
[Stations and ordinate~ given in percent of 

airfoil chord] 

Upper surface Lower surfaee 

Station Ordinato Station Ordinate 
---- ._---------

0 0 0 0 
.5 .476 .5 -.476 
.75 .574 .75 -.574 

1.25 .717 1.25 -.717 
2.5 .956 2.5 -.956 
5.0 1.310 5.0 -1.310 
7.5 1.589 7.5 -1.589 

10 1.824 10 -1.824 
15 2.197 15 -2.197 
20 2.482 20 -2.482 
25 2.697 25 -2.697 
30 2.852 30 -2.852 
35 2.952 35 -2.952 
40 2.998 40 -2.998 
45 2.9S:l 4.1 -2.98.1 
50 2.900 50 -2.900 
55 2.741 55 -2.741 
60 2.518 60 -2.518 
65 2.246 65 -2.246 
70 1.935 70 -1.9:15 
75 I. 594 75 -1.594 
80 I. 233 80 -1.233 
85 .865 81i -.865 
90 .510 90 -.510 
95 .195 95 -.195 

100 0 100 0 

L. E. radius: 0.240 
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NACA 65-009 NACA 65-206 NACA 65-209 NACA 65-21 0 NACA 65-41 0 
(Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates given in percent 

airfoil chord] airfoil chord] airfoil chord] airfoil chord] airfoil chord] 

UpPer surface Lower surface 

Station Ordinate Station Ordinate 
-------------

0 0 0 0 
.5 .700 .5 -.700 
.75 .845 .75 -.845 

1. 25 1.058 1. 25 -1.058 
2.5 1.421 2.5 -1.421 
5.0 1. 961 5.0 -1.961 
7.5 2.383 7.5 -2.383 

10 2.736 10 -2.736 
15 3.299 15 -3.299 
20 3.727 20 -3.727 
25 4.050 25 -4.050 
30 4.282 30 . -4.282 
35 4.431 35 -4.431 
40, 4.496 40 -4.496 
4S 4.469 45 -4.469 
50 4.336 50 -4.336 
55 4.086 55 -4.086 
60 3.743 60 -3.743 
65 3.328 65 -3.328 
70 2.856 70 -2.856 
75 2.342 75 -2.342 
80 1.805 80 -1.805 
85 1,260 85 -1.260 
90 ,738 90 -.738 
95 ,280 95 -,280 

100 0 100 0 

L. E. radius: 0.552 I 

NACA 651-012 
[stations and ordinates given in percent of 

airfoil chord] 

Upper sUrface Lower surface 

Station Ordinate Station Ordinate 
---

0 0 0 0 
.5 .923 .5 -.923 
.75 1.109 .75 -1.109 

1.25 1. 387 1.25 -1.387 
2.5 le875 2.5 -1.875 
5.0 2.606 5.0 -2.606 
7.5 3.172 7.5 -3.172 

10 3.647 10 -3.647 
15 4.402 15 -4.402 
20 4.975 20 -4.975 
25 5,406 25 -5.406 
30 5.716 30 -5.716 
35 5.912 35 -5.912 
40 5.997 40 -5.997 
45 5.949 45 -5.949 
50 5.757 50 -5.757 
55 5.412 55 -5.412 
60 4.943 60 -4.943 
65 4.381 65 -4.381 
70 3.743 70 -3.743 
75 3.059 75 -3.059 
80 2.345 80 -2,345 
85 1.630 85 -1.630 
90 .947 90 -.947 
95 .356 95 -.356 

100 0 100 0 

L. E, radius: 1.000 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
-------

0 0 0 0 
.460 .524 .540 -.424 
.706 .642 .794 -.502 

1.200 .822 1.300 -.608 
2.444 1.140 2.556 -.768 
4.939 1.625 5.061 -.993 
7.437 2.012 7.563 -1.164 
9.936 2.340 10.064 -1.306 

14.939 2.869 15.061 -1. 523 
19.945 3.277 20.055 -1.685 
24.953 3.592 25.047 -1.802 
29.962 3.824 30.038 -1.880 

. 34.971 3.982 35.029 -1.922 
39.981 4.069 40.019 -1.927 
44.990 '4.078 45.010 -1.888 
50.000 4.003 50.000 -1. 797 
55.009 3.836 54.991 -1.646 

.60.016 3.589 59.984 -1.447 
65.022 3.276 64.978 -1.216 
70.026 2.907 69.974 -.963 
75.028 . 2.489 74.972 -.699 
80.027 2.029 79.973 -.437 
.85.024 1.538 84.976 -.192 
90.018 1.027 89.982 .007 
95.009 .511 94.991 .121 

100.000 0 100.000 0 

L. E. radius: 0.240 
Slope of radius through L. E.: 0.084 

NACA 651-212 
[Stations and ordinates given in percent of 

airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station' Ordinate 
------------

0 0 0 0 
.423 .970 ,577 -.870 
.664 1.176 ,836 -1.036 

1.154 1. 491 1.346 -1.277 
2.391 2.058 2.609 -1.686 
4.878 2.919 5.122 . -2.287 
7.373 3.593 1 7.627 -2.745 
9.873 4.162 10.127 -3.128 

14.879 5.073 15.121 -3.727 
19.890 5.770 20.110 -4.178 
24.906 6.300 25.094 -4.510 
29.923 6.687 30.077 -4.743 
34.942 . 6.942 35.058 -4.882 
39.961 7.068 40.039 -4.926 
44.981 7.044 45.019 -4.854 
50.000 6.860 50.000 -4.654 
55.017 6.507 54.983 -4.317 
60.032 6.C:!'4 59.968 -3.872 
65.043 5.411 64. 957 -3.351 
70.050 4.715 69.950 -2.771 
75.053 3.954 74.947 -2.164 
80.052 3.140 79.948 -1.548 
85.045 2.302 - 84.955 -.956 
90.033 1.463 89.967 -.429 
95.017· ,672 94.983 -.040 

100,000 0 100,000 O· 

L. E, radius: 1.000 
Slope of radius through L. E.:· 0.084 

-- --

Upper surface Lower surface 

Station Ordinate Station Ordinate 
------

0 0 0 0 
,441 .748 .559 -,648 
.684 .912 .816 -.772 

1.177 1.162 1.323 -.948 
2.417 . 1.605 2.583 -1.233 
4.908 2.275 5.092 -1.643 
7.405 2.805 7.595 -1.957 
9.904 3.251 10.096 -2.217 

14.909 3.971 15.091 -2.625 
19.918 4.522 20.082 -2.930 
24.929 4.944 25.071 -3.154 
29.942 5.254 30.058 -3.310 
34.956 .1.461 35.044 -3.401 
39.971 5.567 40.029 -3.425 
44.986 5.564 45.014 -3.374 
50.000 5.439 50.000 -3.233 
55.013 5.181 54. 987 -2.991 
60.024 4.814 59.976 -2.672 
65.033 4.358 64.967 -2.298 
70.039 3.828 69.961 -1.884 
75.041 3.237 74.959 .-1.447 
80.040 2.601 79.960 -1.009 
85.035 1.933 84.965 -.587 
90.026 1.255 89.974 -.221 
95.013 .596 94.987 ,036 

100.000 0 100.000 0 

L. E. radius: 0.552 
Slope of radius through L. E.: 0.084 

NACA 651-212 
. a=0.6 

[Stations and ordinates given in percent of 
airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
---- ------

0 0 0 0 
,399 ,982 .601 -.852 
,638 1.194 .862 -1.012 

1.124 1. 520 1.376 -1.242 
2.356 2.113 2.644 -1.625 

,4.837 3.017 5.163 -2.185 
7.329 3.728 7.671 -2.606' 
9.827 4.330 10.173 -2.956 

14.833 5.298 15.167 -3.5iJo 
19.848 6. 042 20. 152 -3.904 
24.869 6.611 25.131 -4.197 
29.894 7.029 30.106 -4.401 
34.921 7.304 35.079 -4.518 
39.951 7.444 40.049 -4.550 
44.983 7.423 45.017 -4.475 
50.017 7.231 49.983 -4.283 
55. 051 6.856 .54.949 -3.968 
60.094 6.318 59.906 -3.566 
65.123 5.634 64.877 -3.124 
70.124 4.842 69.876 -2.640 
75.112 3.983 74.888 -2.131 
80.090 3.082 79.910 -1.604 
85,064 2.173 84.936 -1.085 
90.036 1.297 89.964 -.595 
95.013 .521 94.987 -.191 

100.000 0 100.000 0 

L. E. radius: 1.000 
Slope of radius through L. E.' 0.110 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
-------------

0 0 0 0 
.435 .819 .565 -.719 
.678 .999 .822 -.859 

1.169 1.273 1. 331 -1.059 
2.408 1.757 2.592 -1.385 
4.898 2.491 5.102 -1.859 
7.394 3.069 7.608 -2.221 
9.894 3.555 10.106 -2.521 

14.899 4.338 15.101 -2.992 
19.909 4.938 20.091 -3.346 
24.921 5.397 25.079 -3.607 
29.936 5.732 30.064 -3.788 
34.951 5.954 35.049 -3.894 
39.968 6.067 40.032 -3.925 
44.984 6.058 45.016 -3.868 
50.000 5.915 50.000 -3.709 
55.014 5.625 54.986 -3.435 
60.027 5.217 59.973 -3.075 
65.036 4.712 64.964 -2.652 
70.043 4.128 69.957 -2.184 
75.045 3.479 74.955 -1. 689 
80.044 2.783 79.956 -1.191 
85.038 2.057 84.962 -.711 
90.028 1.327 89.972 -.293 
95.014· .622 '94.986 .010 

100.000 0 100.000 0 

L. E. radius: 0.687 
Slope of radius through L. E.: 0.084 

NACA 651-412 
[Stations and ordinates git'en in percent of 

airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
-------------

0 0 0 0 
.347 1.010 .653 -.810 
,580 1.236 ,920 -.956 

1.059 1.588 1. 441 ~1.160 
2.283 2.234 2.717 -1.490 
4.757 3.227 5.243 -1. 963 
7.247 4.010 7.753 -2.314 
9.746 4.672 10.254 -2.604 

14.757 5.741 15.243 -3.049 
19.781 6.562 20.219 -3.378 
24.811 7.193 25,189 -3.613 
29.846 7.658 30.154 -3.770 
34.884 7.971 35.116 -3.851 
39.923 8.139 40.077 -3.855 
44.962 8.139 45.038 -3.759 
50.000 7.963 50.000 -3.551 
55.035 7.602 54.965 -3.222 
60.064 7.085 59.936 -2.801 
65.086 6.440 64. 914 -2.320 
70.101 5.686 69.899 -1. 798 
75.107 4.847 74.893 -1. 267 
SO. 103 3.935 79.897 -.75L 
85.090 2.9.74 84.910 -.282 
90.066 1.979 89.934 .089 
95.033 .986 94.967 .278 

100.000 0 100,000 0 

L. E. radius: 1.000 
Slope of radius through L. E,: 0.168 

---

Upper surface Lower surface 

Station Ordinate Station Ordinate 
-------------

0 0 0 0 
.372 .861 .628 -.661 
.607 1.061 .893 -.781 

1.089 1.372 1.411 -.944 
2.318 1. 935 2.682 -L191 
4.797 2.800 5.203 -1.536 
7.289 3.487 7.711 -1.791 
9.788 4.067 10.212 -1.999 

14.798 5.006 15.202 -2.314 
19.817 5.731 20.183 -2.547 
24.843 6.290 25.157 -2.710 
29.872 6.702 30.128 -2.814 
34.903 6.983 35.097 -2.863 
39.936 7.138 40.064 -2.854 
44.968 7.153 45.032 -2.773 
50.000 7.018 50.000 -2.606 
55.029 6.720 54.971 -2.340 
60.053 6.288 59.947 -2.004 
65.073 5.741 64.927 -1.621 
70.085 5.099 69.915 -1.211 
75.090 4.372 74.910 -.792 
80.088 3.577 79.912 -.393 
85.076 2.729 84.924 -.037 
90.057 1.8·12 89.943 .226 
95.029 .937 94.971 .327 

100.000 0 100.000 0 

L. E. radius: 0.687 
Slope of radius through L. E.: 0.168 

-

NACA 652-01 5 
[Stations and ordinates given in percent of . 

airfoil chord] 

U ppersurface Lower surface 

Station Ordinate Station Ordinate 
------------

0 0 0 0 
.5 1.124 .5 -1.124 
.75 1.356 .75 -1.356 

1.25 1. 702 1. 25 -1.702 
2.50 2.324 2.50 -2.324 
5.00 3.245 5.00 -3.245 
7.50 3.959 7.50 -3.959 

10 4.555 10 -4.555 
15 .5,504 15 -5.504 
20 6.223 20 -6.223 
25 6;764 25 -6.764 
30 7.152 , 30 -7.152 
35 7.396 '35 -7.396 
40 7.498 40 -7.498 
45 7.427 45 -7.427 
50 7.168 50 -7.168 
55 6.720 55 -6.720 
60 6.118 60 -6.118 
65 5.403 65 -5.403 
70 4.600 70 -4.600 
75 3.744 75 -3.744 
80 2.858 80 -2.858 
85 1. 977 85 -1.977. 
90 . 1.144 90 -1.144 
95 .428 95 ~.428 

100 0 100 0 

----I 
L. E. radius: 1.505 
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NACA 652-21 5 
[Stations and ordinates given in percent of 

airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
------------

0 0 0 0 
.406 1.170 .594 -1.070 
.645 1.422 .855 -1.282 

1.132 1.805 1. 368 -1.591 
2.365 2.506 2.635 -2.134 
4.848 3.557 5.152 -2.925 
7.342 4.380 7.658 -3.532 
9.841 5.069 10.159 -4.035 

14.848 6.175 15.152 -4.829 
19.863 1. 018 ·20.137 -5.426 
24.882 '7.·658 25.118 -5.868 i 
29.904 8.123 30.096 -6.179 

I 
34.927 8. 426 35.073 ,-6.366 
39.952 8.569 40.048 -6.427 
44.976 8.522 45.024 -6.332 
50.000 '8.271 50.000 -6.065 I 
55.021 7.815 54.979 -5.625 
60.039 7.189 59.961 -5.047 
65.053 6.433 64.947 -4.373 
70.062 5.572 69.938 -3.628 
75.065 4.638 74.935 -3.848 
80.063 3.653 79.937 -2.061 
85.055 2.649 84.945 -1.303 
90.040 1. 660 89.960 -.626 
95.020 .744 94.980 -.112 

100.000 0 100.000 0 

L. E. radius: 1.505 
Slope of radius through L. E.: 0.084 

NACA 652-41 5 
[Stations and ordinates given in percent of 

airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station I Ordinate 
----

0 0 0 0 
.313 1. 208 .687 -1.008 
.542 1. 480 .958 -1.200 

1.016 1.900 1.484 -1.472 
2.231 2.680 2.769 -1.936 
4.697 3.863 5.303 -2.599 
7.184 4.794 7.816 -3.098 
9.682 5.578 10.318 -3.510 

14.697 6.842 15.303 -4.150 
19.726 7.809 20.274 -4.625 
24.764 8.550 25.236 -4.970 
29.807 9.093 30.193 -5.205 
34.854 9.455 35.146 -5.335 
39.903 9.639 40.097 -5.355 
44.953 9.617 45.047 -5.237 
50.000 9.374 50.000 -4.962 
55.043 8.910 54.957 -4.530 
60.079 8.260 59.921 -3.976 
65.106 7.462 64.894 -3.342 
70.124 6.542 69.876 -2.654 
75.131 5.532 74.869 -1.952 
80.126 4.447 79.874 -1.263 
85.109 3.320 84.891 -.628 
90.080 2.175 89.920 -.107 
95.040 1.058 94.960 .206 

100.000 0 100.000 0 

L. E. radius: 1.505 
Slope of radius thl"Ough L. E.: 0.168 

NACA 653-41 8 NACA 653-41 8 
[Stations and ordinates given in percent of a = 0.5 

airfoil chord] 

Upper surface Lower surface 

station_I Ordinate . Statio~1 Ordina~ 
0 0 0 0 

.278 1. 418 .722 -1.218 

.503 1. 729 .997 -1. 449 

.973 2.20jJ 1.527 -1. 781 
2.181 3.104 2.819 -2.360 
4.639 4.481 5.361 -3.217 
7.123 5.566 7.877 -3.870 
9.619 6.478 10.381 -4.410 

14.636 7.942 15.364 -5.250 
19.671 9.061 20.329 -5.877 
24.716 9.914 25.284 -6.334 
29.768 10.536 30.232 -6.648 
34.825 Hi 244 35.175 -6.824 
39.884 11.140 40.116 -6.856 
44.943 11.091 45.057 -6.711 
50.000 10.774 50.000 -6.362 
55.051 10.1£8 54.949 -5.818 
60.094 9.408 59.906 -5.124 
65.126 8.454 64.874 -4.334 
70.146 7.368 69.854 -3.480 
75.154 6.183 74.846 -2.603 
80.147 4.927 79.853 -1. 743 
85.127 3.63"8 84.873 -.946 
90.092 2.300 89.908 -.282 
95.046 1.120 94.954 .144 

100.000 0 100.000 I 0 

L. E. radius: 1.96 
Slope of radius through L. E.: 0.168 

[Stations and ordinates given in percent of 
airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
-------------

0 0 0 0 ! 

.197 1. 440 l:g~{ -1.164 

.411 1. 766 -1.378 

.868 2.271 1. 632 -1. 683 
2.057 3.233 2.943 -2.197 
4.493 4.715 5.507 -2.951 
6.966 5.891 8.034 -3.515 
9.459 6.882 10.541 -3.978 

14.481 8.482 15.519 -4.690 
19.533 9.709 20.467 -5.213 
24.604 10.643 25.396 -5.595 
29.691 11.325 30.309 -5.853 
34.789 11. 770 35.211 -5.998 
39.899 11. 970 40.101 -6.026 
45.022 11. 897 44.978 -5.905 
50.182 11. 506 49.818 -5.626 
55.313 10.788 .14.687 -5.216 
60.364 9.820 59.636 -4.696 
65.372 8.674 64.628 -4.094 
70.347 7.397 69.653 -3.433 
75.298 6.038 74.702 -2.734 
80.232 4.636 79.768 -2.024 
85.159 3.247 84.841 -1. 331 
90.089 1. 930 89.911 -.702 
95.030 .777 94.970 -.201 

100.000 0 100.000 0 

L. E. radius: 1.96 
Slope of radius through L. E.: 0.233 

NACA 652-41 5 
a=0.5 

[Stations and ordinates given in percent of 
airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
.--------------

0 0 0 0 
.245 1.233 .755 -.957 , 

.464 1. 520 1.036 -1.132 

.927 1.965 1.573 -1.377 
2.126 2.812 2.874 -1. 776 
4.574 4.099 5.426 -2.335 
7.0.14 5.122 7.946 -2.746 
9. .149 5.985 10.451 -3.081 

14.568 7.383 15.432 -3.591 
19.611 8. 459 20.389 -3.963 
24.671 9.280 25.329 -4.232 
29.743 9.883 30.257 -4.411 
34.825 10.280 35.175 -4.508 
39.916 10.470 40.084 -4.526 
45.019 10.423 44.981 -4.431 
50.152 10.106 49.848 -4.226 
55.262 9.501 54.738 -3.929 
60.307 8.672 59.693 -3.548 
65.314 7.684 64.686 -3.104 
70.294 6.573 69.706 -2.609 
75.253 5.387 74.747 -2.083 
80.199 4.157 . 79.801 -1.545 
85.137 2.930 84.863 -1.014 
90.077 1. 755 89.923 -.527 
95.027 .715 94.973 -.139 

100.000 0 100.000 0 

L. E. radius: 1.505 
Slope of radius through L. E.: 0.233 

NACA 653-01 8 
[Stations and ordinates given in percent of 

airfoil chord] 

Upper snrface Lower surface 

Station Ordinate Station Ordinate 
--------------

0 0 0 0 
.50 1. 337 .50 -1.337 
.75 1.608 .75 -1.608 

1.25 2.014 1. 25 -2.014 , 

2.5 2.751 2.5 -2.751 
5.0 3.866 5.0 -3.866 
7.5 4.733 7.5 -4.733 

10 5.457 10 -5.457 
15 6.606 15 -6.606 
20 7.476 20 -7.476 
25 8.129 25 -8.129 
30 8. 595 30 -8.595 
35 8. 886 35. -8. 886 
40 8. 999 40 -8. 999 
45 8. 901 45 -8. 901 
50 8.568 50 -8. 568 
55 8. 008 55 -8.008 
60 7.267 60 -7.267 
65 6.395 65 -6.395 
70 5.426 70 -5.426 
75 4.396 75 -4.396 
80 3.338 80 -3.338 
85 2.295 85 -2.295 
90 1. 319 90 -1.319 
95 .490 95 -.490 

100 0 100 0 

L. E. radius: 1.96 

NACA 653-61 8 NACA 653-61 8 
[Stations and ordinates given in percent of a = 0.5 

airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
-------------

0 0 0 0 
.172 1.446 .828 -1.146 
.385 1.776 1. li5 -1.356 
.839 2.293 1. 661 -1.651 

2.026 3.268 2.974 -2.152 
4.462 4.776 5.538 -2.880 
6.936 5.971 8. 064 -3.427 
9.431 6.978 10.569 -3.876 

14.455 8.602 15.545 -4.564 
19.506 9.848 20.494 -5.072 
24.574 10.803 25.426 -5,433 
29.652 11.504 30.348 -5.672 
34.738 11. 972 35.262 -5.792 
39.826 12.210 40.174 -5.784 
44.915 12.186 45.085 -5.616 
50.000 11.877 50.000 -5.259 
55.077 11.293 54.923 -4.723 
60.141 10.479 59.859 -4.053 
65.189 9.482 64.811 -3.302 
iO.219 8.338 69.781 -2.506 
75.230 7.075 74.770 -1. 705 
80.220 5.719 79.780 -.943 
85.189 4.306 84.811 -.268 
90.138 2.863 89.862 .239 
95.068 1. 433 94.932 .463 

100.000 0 100.000 0 

L. E. radius: 1.96 
Slope of radius through L. E.: 0.253 

[Stations and ordinates given in percent of 
airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
--_.- -----------

0 0 0 0 
.059 1. 469 .941 -1.055 
.256 1. 821 1. 244 -1.239 
.689 2.375 1.811 -1.493 

1.846 3.449 3.154 -1.895 
4.248 5.115 5.752 -2.469 
6.706 6.448 8.294 -2.884 
9.194 7.575 10.806 -3.219 

14.225 9.404 15.775 -3.716 
19.301 10.815 20.699 -4.071 
24.407 11.893 25.593 -4.321 
29.537 12.687 30.463 -4.479 
34.684 13.209 35.316 -4.551 
39.849 13.456 40.151 -4.540 
45.034 13.395 44.966 -4.407 
50.273 12.9i4 49.727 -4.154 
55.468 12.173 54.532 -3.815 
60.546 11. 090 59.454 -3.404 
65.557 9.806 64.443 -2.936 
70.519 8.374 69.481 -2.428 
75.445 6.851 74.555 -1.895 
80.347 5.279 79.653 -1.361 
85.239 3.720 84.761 -.846 
90.133 2.233 89.867 -.391 
95.046 .920 94.954 -.056 

100.000 0 100.000 0 

L. E. radius: 1.96 
Slope of radius through L. E.: 0.349 

NACA 653-21 8 
[Stations and ordinates given in percent of 

airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
._--------------

0 0 0 0 
.388 1.382 .612 -1.282 
.625 1.673 .875 -1.533 

1.110 2.116 1.390 -1.902 
2.340 2.932 2.660 -2.560 
4.819 4.178 5.181 -3.546 
7.311 5.153 7.689 -4.305 
9.809 5.971 10.191 -4.937 

14.818 7.276 15.182 -5.930 
19.885 8.270 20.165 -6.676 
24.858 9.023 25.142 -7.233 
29.884 9.566 30.116 -7.622 
34.912 9.916 35.088 -7.856 
39.942 10. 070 40.058 -7.928 
44.972 9.996 45.028 -7.806 
50.000 9.671 50.000 -7.465 
55.026 9.103 54.974 -6.913 
60.047 8.338 59.953 -6.196 
65.063 7.425 64.937 -5.36.5 
70.073 6.398 69.927 -4.454 
75.077 5.290 74.923 -3.500 
80.074 4.133 79.926 -2.541 
85.063 2.967 84.937 -1.621 
90.046 1.835 89.954 -.801 
95.023 .805 94.977 -.173 

100.000 0 100.000 0 

L. E. radins: 1.96 

I Slope of radius through L. E.: 0.084 

NACA 654.021 
[Stations and ordinates given in percent of 

airfoil chord] 
/ 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
----------_._--

0 0 0 0 
.50 1.522 .50 -1.522 
.75 1.838 .75 -1.838 

1. 25 2.301 1.25 -2.301 
2.5 3.154 2.5 -3.154 
5.0 4.472 5.0 -4.472 
7.5 5.498 7.5 -5.498 

10 6.352 10 -6.352 
15 7.700 15 -7.700 
20 8.720 20 -8.720 
25 9.487 25 -9.487 
30 10036 30 -10 036 
35 10.375 35 -10.375 
40 10499 40 -10.499 
45 10.366 45 -10.366 
50 9.952 50 -9.91\2 
55 9.277 55 -9.277 
60 8.390 60 -8.390 
65 7.360 65 -7.360 
70 6.224 70 -6.224 
75 5.024 i5 -5024 
80 3.800 80 -3.800 
85 2.598 85 -2.598 
90 1.484 90 -1.484 
95 .546 95 -.546 

100 0 100 0 

L. E. radius: 2.50 
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NACA 654-221 NACA 654-421 NACA 654-421 
a=0.5 [Stations and ordinates given in percent of [Stations and ordinateS" given in percent of 

airfoil chord] airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
-------------

0 0 0 0 
.372 1.567 .628 -1.467 I 
.608 1. 902 .892 -1.762 

1.090 '2.402 1.410 -2.188 
2.314 3.335 2.684 -2.963 I 
4.791 4.783 5.209 -4.151 
7.280 5.918 7.720 =g:~~~ I 9.778 6.865 10.222 

14.787 8.370 15.213 -7.024 
19.808 9.514 20.192 =U~i I 24.834 10.381 25.166 
29.865 11.007 30.135 -9.063 
34.898 11.404 35.102 -9.344 
39.932 11. 570 40.068 -9.428 I 
44.967 11.461 45.033 -9.271 
50.000 11. 055 50.000 -8.849 
55.030 10.372 54.970 -8.182 
60.054 9.461 59.946 -7.319 
65.072 8.390 64.928 -6.330 
70.084 7.195 69.916 -5.251 
75.088 5.918 74.912 -4.128 
80.084 4.595 79.916 -3.003 ' 
85.072 3.270 84.928 -1.924 
90.052 2.000 89.948 -c. 966 
95.026 .861 94.974 -.229 

100.000 0 100.000 0 

L. E. radius: 2.50 
Slope of radius through L. E.: 0.084 

--

NACA 66, 1-21 2 
lStati~ns and ordinates given in percent 0 

airfoil chord] 

Upper surface Lower surface 
-------

Station Ordinate Station Ordinate 
-------------

0 0 0 0 
.424 .947 .576 -.847 
.666 1.150 .834 -1.010 

1.157 1. 447 1.343 -1.233 
2.395 1.986 2.605 -1.614 
4.884 2. 797 5.116 -2.165 
7.379 3.441 7.621 -2.593 
9.878 3.997 10.122 -2.963 

14.884 4.885 15.116 -3.539 
19.895 5.574 20.105 -3.982 
24.909 6.112 25.091 -4.322 
29.925 6.522 30.075 -4. 578 
34.943 6.816 35.057 -4.756 
39.962 7.005 40.038 -4.863 
44.981 7.093 45.019 -4.903 
50.000 7.075 50.000 -4.869 
55. 019 6.939 54.981 -4.749 
60.036 6.665 59: 964 -4.523 
65.051 6.195 64.949 -4.135 
70.061 5.507 69.939 -3.563 
75.066 4.683 74.934 -2.893 
80.065 3.759 79.935 -2.167 
85.058 2.770 84.942 -1.424 
90.043 1.760 89.957 -.726 
95.022 .792 94.978 -.160 

100.000 0 100.000 0 

L. E. radius: 0.893 
Slope of radius through L. E.: 0.084 

-

Upper surface Lower surface 

. Station Ordinate Station Ordinate 
------------

0 0 0 0 
.247 1.601 .753 -I.-WI 
.468 1.956 1.032 -1.676 
.933 2.493 1. 567 -2.065 

2.135 3.505 2.865 -2.761 i 
4.582 5.085 5.417 -3.821 
7.062 6.329 7.938 -4.633 
9.557 7.371 10.443 -5.303 

14.575 9.034 15.425 -6.342 
19.616 10.304 20.384 -7.120 
24.668 11.271 2.5.332 -7.691 
29.729 11. 976 30.271 -8.088 
34. 796 12.433 &5.204 -8.313 
39.865 12.640 40.135 -8.356 
44.934 12.556 45.066 -8.176 
50.000 12.158 50.000 -7.746 
55.059 11.467 54.911 -7.087 
60.108 10.531 59.892 -6.247 
65.145 9.419 64.855 -5.299 
70.168 8.166 69.832 -4.278 
7.5.176 6.811 74.824 -3.231 
80.167 5.388 79.833 -2.204 
85.143 3.940 84.857 -1.248 
90.104 2.514 89.896 -.446 
95.051 1.176 94.949 .088 

100.000 0 100.000 0 

L. E. radius: 2.50 

I 
Slope of radius through I,. E.: 0.168 

-

[Stations and ordinates given in percent of 
airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
-------------

0 0 0 0 
.155 1. 620 .845 -1.344 
.363 1. 991 1.137 -1.603 
.813 2.553 1.687 -1.965 

1. 992 3.631 3.008 -2.595 
4.414 5.315 5.586 -3.551 
6.880 6.651 8.120 -4.275 
9.371. 7.773 10.629 -4.869 

14.395 9.572 15.605 -5.780 
19.455 10.951 20.545 -6.455 
24.538 12.0nO 25.462 -6.952 
29.639 12.765 30.361 -7.293 
M.754 13.258 35.246 -7.486 
39.882 13.470 40.118 -7.526 
45.026 13.362 44.974 -7.370 
50.211 12.890 49.789 -7.010 
50.362 12.056 54.638 -6.484 
60.421 10.942 59.579 -5.818 
65.428 9.637 64.572 -5.057 
70.398 8.193 69.602 -4.229 
75.340 6.664 74.660 -3.360 
80.264 5.097 79.736 -2. 485 
85.181 3.550 84.819 -1.634 
90.100 2.095 89.900 -.867 
95.034 .833 94.966 -.257 

100 000 0 100.000 0 

L. E. radius: 2.50 
Slope of radius through L. E.: 0.233 

- - --

NACA 66(21 5)-01 6 NACA 66(21 5)-21 6 
[Stations and ordinates given in percent of [Stations and ordinates given in percent of 

airfoil chord] airfoil chord] 

Upper surface Lower surface. I Upper surface Lower surface 
I -------------

Station Ordinate Station Ordinate I Station Ordiuate Station Ordinate I 
----------- ----

0 0 0 0 I 0 0 0 0 
.5 1.184 .5 -1.184 .401 1. 230 .599 -1.130 
.75 1.418 .75 -1. 418 .640 1. 484 .860 -1.344 

1. 25 1. 755 1. 25 -1. 755 1.128 1.858 1. 372 -1.644 
2.5 2.378 2.5 -2.378 2.362 2.560 2.638 -2.188 
5.0 3.292 5.0 -3.292 
7.5 4.007 7.5 -4.007 

10 4.626 10 -4.626 

4.846 3.604 5.154 -2.972 I 
7.340 4.428 7.660 -3.580 
9.838 5.140 10.162 -4.106 

15 5.605 15 -5.605 
20 6.362 20 -6.362 
25 6.950 25 -6.950 

14. 845 6.276 15.155 -4.930 I 
19.860 7.156 20.140 -5.564 
24.879 7.844 25.121 -6.054 ' 

30 7.395 30 -7.395 
35 7.706 35 -7.706 
40 7.909 40 -7.909 

29.900 8.366 30.100 -6.422 I 
34.924 8. 736 35.076 -6.676 
39.949 8.980 40.051 -6.8.18 

45 7.997 45 -7.997 
50 7.957 50 -7.957 

44.974 9.092 45.026 =~:~; I 50.000 9.060 50.000 
55 7.780 55 -7.780 55.025 8.875 54.975 -6.685 
60 7.425 60 -7.425 
65 6.832 65 -6.832 

60.048 8. 496 59.952 =~:~8i I 65.067 7.862 64.938 
70 5.970 70 -5.970 70.081 6.941 69.919 -4.997 
75 4.966 75 -4.966 
80 3.849 80 -3.849 

75.087 5.860 74.913 =~:g;g I 80.08.5 4.644 79.915 
85 2.72.3 85 -2.723 85.075 3.395 84.925 -2.049 
90 1. 587 90 -1.587 
95 .597 95 -.597 

90.055 2.103 89.945 -1.069 
I 95.028 .913 94.972 -.281 

100 0 100 0 100.000 0 100.000 0 
I 

J •. E. radius: 1.575 I,. E. radius: 1.575 
Slope of radius through L. E.: 0.084 

! 

NACA 65(215)-114 NACA 65(421)-420 
[Stations and ordinates given in percent of [Stations and ordinates given in percent of 

airfoil chord] airfoil chord] 

U ppcr surface Lower surface 
-------

Sta:ion I Ordina~ Station Ordinate 
------~ 

0 0 0 0 
.456 1. 073 .544 -1.023 
.701 1. 300 .799 -1. 230 

1.195 1. 642 1.305 -1. 534 
2.437 2.261 2.563 -2.075 
4.929 3.186 5.071 -2.870 
7.426 3.906 7.574 -3.482 
9.926 4.508 10.074 -3.992 

14.929 5.472 15.071 -4.800 
19.936 6.206 20.064 -5.410 
24.945 6.761 25.055 -5.865 
29.955 7.161 30.045 -6.189 
34.966 7.418 35.034 -6.388 
39.977 7.534 40.023 -6.462 
44.989 7.480' 45.011 -6.384 
50.000 7.242 50.000' -6. 138 
55.010 6.820 54.990 -5.724 
60.018 6.246 59.982 -5.174 
65.025 5.558 64.975 -4. 528 
70.029 4.779 69.971 -3.807 
75.031 3.942 74.969 -3.046 
80.029 3.065 79.971 -2.269 
85.025 2.181 84.975 -1.509 
90.019 1. 326 89.981 -.810 
95.009 .557 94.991 -.241 

100.000 0 100.000 0 

L. E. radius: 1.311 
Slope of radius through L. E.: 0.042 

NACA 66(215)-21 6 
a=0.6 

[Stations and ordinates given in percent of 
airfoil chord] , 

Upper surface Lower surface 
--------

Station Ordinate Station ~rdinatel 

0 0 0 0 

I 
.371 1.242 .629 -1. 112 
.607 1. 501 .893 -1.319 

1. 091 1. 886 1.409 -'-I. 608 
2.317 2.615 2.683 -2.127 
4.794 3.701 5.206 -2.869 
7.284 4.563 7.716 ~3.441 
9.781 5.308 10.219 -3.934 

14.788 6.500 15.212 -4.702 
19.806 7.428 20.194 -5.290 
24.832 8.155 25.168 -5.741 
29.862 8.708 30.138 -6.080 
34.897 9.098 35.103 -6.312 
39.936 9.356 40.064 -6.462 
44.978 9.471 45.022 -6.523 
50.023 9.431 49.977 -6.483 , 

55.073 9.224 54.927 -6.336 
60.141 8.800 59.859 -6.048 
65.191 8.084 64.809 -5.574 ! 
70.198 7.068 69.802 -4.866 
75. 181 5.889 74.819 -4.037 
80.148 4.585 79.852 -3.107 
85.106 3.265 84.894 -2.177 
90.061 1. 937 I 89. 939 -1.235 
9.5.021 .762 94.979 -.432 

100.000 o 100.000 0 

L. E. radius: 1.575 
Slope of radius through L. E.: 0.110 

Upper surface Lower surface 

Station I Ordinate Station Ordinate 

0 0 0 0 
.258 1. 537 .742 -i,337 
.482 1.864 1. 018 -1.584 
.950 2.374 1. 550 -1.946 

2.152 3.358 2.848 -2.614 
4.603 4.866 5.397 -3.602 
7.083 6.066 7.917 -4.370 
9.579 7.060 10.421 -4.992 
4.596 8.665 15.404 -5.973 

19.634 9.885 20.366 -6.701 
24.684 10.815 25.316 -7.235 
29.742 11.494 30.258 -7.606 
34.805 11.939 35.195 -7.819 
39.871 12.140 40.129 -7.856 
44.937 12.056 45.063 -7.676 
50.000 11.672 50.000 -7.260 
5.5.056 11.015 54.944 -6.635 
60.103 10.126 59.897 -5.842 
65.138 9.060 64.862 -4.940 
70.160 7.861 69.840 -3.973 
75.167 6.563 74.833 -2.983 
80.159 5.200 79.841 -2.016 
85.136 3.813 84.864 -'-1.121 
90.098 2.441 89.902 -.373 
95.049 1.150 94.951 .114 

100.000 0 100.000 0 

L. E. radius: 2.27 
Slope of radius through L. E.: 0.168 

- - --

NACA 66(21 5)-41 6 
[Stations and ordinates given in percent of 

airfoil chord] 

Upper surface Lower surface 
-------------

Station' Ordinate Station Ordinate 
---._---------

0 0 0 0 
.303 1.268 .697 -1.068 
.532 1.541 .968 -1.261 

1.008 1. 952 1.492 -1.524 
2.225 2.734 2.775 -1.990 
4.693 3.910 5.307 -2.646 
7.180 4.843 7.820 -3.147 
9.677 5.649 10.323 -3.581 

14.691 6.942 15.309 -4.250 
19.720 7.948 20.280 -4.764 
24.757 8.736 25.243 -5.156 
29.801 9.336 30.199 -5.448 
34.848 9.765 35.152 -5.645 
39.898 10.050 40.102 -5.766 
44.949 10.187 45.051 -5.807 
50.000 10.163 50.000 -:;.751 
55.050 9.970 54.950 -5.590 
60.096 9.566 59.904 -5.282 
65.135 8.891 64.865 -4.771 
70.161 7.912 69.839 -4.024 
75.174 6.753 74.826 -3.173 
80.170 5.437 79.830 -2.253 
85.150 4.065 84.850 -1.373 
90.111 . 2.617 89.889 -.549 
95.056 1. 226 94.944 .038 

100.000 0 100.000 0 

L. E. radius: 1.575 
Slope of radius through L. E,: 0.168 
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NACA 66-006 . NACA 66-009 NACA 66-206 NACA 66-209 NACA 66-21 0 
[Stations and ordinates given in percent of [Stations and ordinates given in percent oC [Stations and ordinates given in percent of [Stations and ordinates giv('n in percNlt of [S(at.lons and ordinall'" p:iven ill IJl'rcent of 

airfoil chord] airfoil chord] airfoil chord] "irfoil chord] airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
--------------

Upper surface Lower sui-face 
-------

Station Ordinate Station Ordinate 
------------

Upper surface Lower surface 

Station Ordinate Station Ordinate 
---------------

Upper surface Lower surface 

Rtation Ordinate Station Ordinate 
--------------

Upper surface Lower surface I 
Station Ordinate ~~:~~I~rdinat~ 

0 0 0 0 0 0 0 0 0 0 0 __ 0 0 0 0 0 0 0 0 0 
.50 .461 .50 -.461 
.75 .554 .75 -.554 

1.25 .693 1. 25 -.693 

.50 .687 .50 -.687 

.75 .824 .75 -.824 
1.25 1.030 1. 25 -1.030 

.461 .509 .539 -.409 

.707 .622 .793 -.482 
1.202 -.798 1.298- -.584 

.442 .735 .558 -.635 
I .686 .892 .814 -.752 

1.179 1. 135 1.321 -.921 

.436 .806 .564 -.706 

.679 .980 .821 -.840 
1.171 I. 245 l.:l2<J -1.031 

2.5 .918 2.5 -.918· 2.5 1.368 2.5 -1.368 2.447 1.102 2.553 -.730. 2.420 I. 552 2.580 -1.180 2.412 1.099 2.588 -1.327 
5.0 1.257 5.0 -1. 257 5.0 1.880 5.0 -1.880 4.941 1.572 5.059 -.940 4.912 2.194 .<;.088 -1.562 4.902 2.40\ 5.098 -I. 769 
7.5 1.524 7.5 -1.524 7.5 2.283 7.5 -2.283 7.439 1. 947 7.561 -1.099 7.409 2.705 7.591 -1.857 7.399 2.958 7.6!)] -2.ll0 

10 1. 752 10 -1..752 10 2.626 10 -2.626 9.939 2.268 10.061 -1.234 9.908 3.141 10.092 -2.107 9.898 3.432 10.102 -2.389 
15 2.119 15 -2.119 15 3.178 15 -3.178 14.942 2.791 15.058 -1.445 14.912 3.850 15.088 -2.504 14.90:l 4.202 15.097 -2.8.'\6 
20 :2.401 20 -2.401 20 3.601 20 -3.601 19.947 3.196. 20.053 -1.604 19.921 4.39R 20.079 -2.804 19.912 4.796 20.088 -:1.204 
25 2.618 25 -2.618 25 3.927 25 -3.927 24.954 3.513 25.046 -1.i23 24.931 4.821 25.069 -3.031 24.924 5.257 25.076 -3.467 
30 2.782 30 -2.782 30 4.173 30 -4.173 29.962 3.754 30.038 -1.81f) 29.944 5.145 30.056 -3.201 29.937 5.608 30.063 -3.664 
35 2.899 35 -2.899 35 4.348 35 -4.348 34.971 3.929 35.029 -1.8R9 34.957 5.378 35.043 -3.318 :)4.952 5.862 35.048 -3.802 
40 2.971 40 -2.971 40 4.457 40 -4.457 39.981 4.042 40.019 -1.900 39.971 5.528 40.029 -3.386 :l9.968 6.024 40.032 -3.082 
45 3.000 45 -3.000 
50 2.985 50 -2.985 
55 2.925 55 -2.925 

45 4.499 45 -4.499 
50 4.475 50 -4.475 
55 4.381 55 -4.381 

44.990 4.095 45.010 -1.905 
50.000 4.088 50.000 -1.882 
55.009 4.020 54.991 -1.830 I 44.986 5.594 45.014 -3.404 

50.000 5.578 50.000 -3.372 
55.014 5.476 54.986 -3.286 

44. P84 IL095 45.016 -3.905 
50.000 6.074 50.000 -3.R68 
55.016 5.960 .54.984 -1.770 

60 2.815 60 -2.815 
65 2.611 65 -2.611 

60 4.204 60 -4.204 
65 3.882 65 -3.882 

60.018 3.886 59.982 -1.744 
I 65.026 3.641 64.974 -1.581 

60.027 5.275 59.973 -3.133 
65.038 4.912 64.962 -2.852 

60.030 5.n6 59.970 -3.594 
65.042 5.132 64.()58 -1.272 

70 2.316 70 -2.316 70 3.428 70 -3.428 70.031 3.288 69.969 -1.344 70.046 4.400 69.954 -2.456 70.051 4.759 69.949 -2.815 
75 1.953 75 -1.953 
80 1. 543 80 -1.543 
85 1.107 85 -1.107 
90 .665 90 -.665 

75 2.877 75 -2.877 
80 2.263 80 -2.263 
85 1.611 85 -1.611 
90 .961 90 -.961 

75.034 2.848 74.966 -1.058 I 80.034 2.3.39 79.996 -.747 
85.031 1.780 84.969 -.434 
90.023 1.182 89.977 -.148 

75.050 3.772 74.950 -1.982 
80.050 3.058 79.950 -1.466 
85.044 2.283 84.956 -.937 
90.034 1.477 89.965 -.443 

75.056 4.071 74.944 -2.281 
80.055 3.289 79.945 -1.697 
85.049 2.445 84.951 -1.099 
90.037 1. 570 89.963 -.536 

95 .262 95 -.262 95 .374 95 -.374 95.012 .578 94.988 .054 95.018 .690 94.982 -.058 95.019 .724 94.981 -.092 
100 0 100 0 100 0 100 0 100.000 0 100.000 0 100.000 0 100.000 0 100.000 0 100.000 0 

L. E. radius: 0.223 I L. E. radius: 0.530 I L. E. radius: 0.223 L. E. radius: 0.530 L. E. radius: 0.662 
, 

---- ---- ----- -- -
Slope of radius through L. E.: 0.084 Slope of radius through L. E.: 0.084 Slope of radius through L. E.: 0.Og4 

~------. ----_._-

NACA 661-012 N·ACA 661-212 NACA 662-015 NACA 662-215 NACA 662-415 
[Stations and ordinates given in percent of [Stations and ordinates given in percent of [Stations and ordinates ~iven in percent of [Stations and ordinates given in percent. of [Stations and ordinaws given in percent of 

airfoil chord] airfoil chord] airfoil chord] airfoil chord] ",iI'foil chord] 

Upper surface Lower surfilCe Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface Upper surface Lower surface 

Station Ordinate Station Ordinate 
--------------

Station Ordinate Station Ordinate 
----------

Station Ordinate Statiou Ordinate 
--------------

Sta~ion I~rdinate I Station Ordinate Station Ordinate Station Ordinate 
--------------

0 0 0 0 
.5 .906 .5 -.906 
.75 1. 087 .75 -1.087 

0 0 0 0 
.424 .953 .576 -.853 
.666 1.154 .834 -1.014 

0 0 0 0 
.5 1.122 .5 -1.122 
.75 1. 343 .75 -1.343 

0 0 0 
-?058 I .·103 1.168 .594 

.646 1.409 .854 -1.269 

0 0 0 0 
.314 1. 206 .686 -1.006 
.544 1.467 .956 -1.187 

1.25 1. 358 1.25 -1.358 
2.5 1.808 2.5 -1.808 
5.0 2.496 5.0 -2.496 
i.5 3.037 7.5 -3.037 

10 3.496 10 -3.496 
15 4.234 15 -4.234 
20 4.801 20 -4.801 
25 5.238 25 -5.238 
30 5.568 30 -5.568 
35 5.803 ' 35 -5.803 

1.156 1.462 1. 344 -1.248 
2.395 1.991 2.605 -1.619 
4.883 2.809 5.117 -2.177 
7.379 3.459 7.621 -2.611 
9.878 4.011 10.122 -2.977 

14.883 4.095 15.117 -3.559 
19.894 5.596 20.106 -4.004 
24.908 6.132 25.092 -4.342 
29.925 6.539 30.075 -4.595 
34.943 6.833 3.5.057 -4.773 

1.25 1.675 1. 2,5 -1.675 
2.5 2.235 2.5 -2.235 
5.0 3.100 5.0 -3.100 
7.5 3.781 7.5 =!:m I 10 4.358 10 

15 5.286 15 -5.286 
20 5.995 20 -5.99.5 
25 6.543 2.<; -6.543 
30 6.956 30 -6.956 I 
35 7.250 35 -7.250 

1.134 1.778 1. 366 
-1.

564
1 2.370 2.417 2.630 -2.045 

4.855 3.413 5.145 -2.781 
7.349 4.202 7.651 -3.354 
9.848 4.872 10.152 -3.838· I 

14.854 5.957 15.146 
-4.6ll I 19.868 6.790 20.132 -5.198 

24.886 7.437 25.114 -5.647 
29.906 7.927 30.094 -5.983 
34.929 8.280 35.071 -6.220 

1.019 1.873 1.481 -1.445 
2.241 2.592 2.759 -1.848 
4.711 3.718 5.289 -2.454 
7.199 4.617 7.801 -2.921 
9.696 5.381 10.304 -3.313 

14.709 6.624 15.291 -3.932 
19.736 7.581 20.264 -4.397 
24.771 8.329 25.229 -4.749 
29.812 8.897 30.188 -5.009 
34.857 9.309 35.143 -5.189 

40 5.947 40 -5.947 39.962 7.018 40.038 -4.876 40 7.430 40 -7.430 39.952 8 . .<;01 40.048 -6.359 39.904 9.571 40.096 -5.287 
45 6.000 45 -6.000 44.981 7.095 45.019 -4.905 45 7.495 45 -7.495 44.976 8.590 45.024 -6.400 44.952 9.685 45.048 -5.305 
50 5.965 50 -5.965 50.000 7.068 50.000 -4.862 50 7.4.<;0 .<;0 -7.450 50.000 8.551 50.000 -6.347 50.000 9.656 50.000 -5.244 
55 5.836 55 -5.836 
60 5.588 60 -5.588 

55.019 6.931 54.981 -4.741 
60.036 6.659 59.964 .-4.517 

55 7.283 55 =~:~ I 60 6.959 60 
55.023 8.378 54.977 -6.188 
60.045 8.030 59.955 -5.888 

55.046 9.173 54.954 -5.093 
60.090 9.100 59.910 -4.816 

65 5.139 65 -5.139 65.051 6.169 64.949 -4.109 65 6.372 65 -6.372 65.063 7.402 64.937 -5.342 65.126 8.431 64.874 -4.311 
70 4.515 70 -4.515 70.061 5.487 69.939 -3.543 70 5.576 70 -5.576 70.075 6.547 69.925 -4.603 70.1.<;0 7.518 69.850 -3.630 
75 3.767 75 -3.767 
80 2.944 80 -2.944 

I 85 2.083 85 -2.083 

75.066 4.661 74.934 -2.871 

I 
80.065 3.739 79.935 -2.1-17 
85.057 2.755 84.943 -1.409 

75 4.632 75 -4.632 

I 
80 3.598 80 -3.598 
85 2.530 85 -2.530 

75.081 5.526 74.919 -3.736 
80.079 4.393 79.921 -2.801 
85.070 3.202 84.930 -1.856 

75.162 6.419 74.838 -2.839 
80.1.<;9 5.187 79.841 -2.003 
85.139 3.872 84.861 -1.180 

90 1. 234 90 -1.234 
95 .474 95 

0.
474

1 100 0 100 

90.043 1. 750 89.957 -.716 
95.022 .789 94.978 -.157 

100.000 0 100.000 0 

90 1. 489 90 -1.489 
95 .566 ·95 -.566 

I 

100 0 100 0 

90.052 2.005 89.948 -.9il 
95.026 .881 94.974 -.249 

100.000 0 100.000 0 

90.104 2.519 89.896 -.451 
95.053 1.196 94.947 .068 

100.000 0 100.000 0 

L. E. radius: 0.952 _J 
---- - --

L. E. radius: 0.952 
Slope of radius through L. E.: 0.084 

L. E. radius: 1.435 
I 

I 

L. E. radius: 1.435 . 
Slope of radius throngh L. E.: 0.084 

L. E. radius: 1.435 
SlopeofradiusthroughL. E.: 0.168 

--- --- ----
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NACA 663-018 
i Stations and ordinat~s given in percent of 

airfoil chord] 

Upper surface Lower surface 
._------

Rtation Ordinate Station Ordinate 
----- -----------

0 0 0 0 
.5 1.323 .5 -1.323 
.7S 1.571 .7ii -1.571 

1.25 1.952 1.25 -1.952 
2.5 2.li4Ii 2 .. > -2.li4fi 
.>.0 a. f)yO 5.0 -a.liYO 
7.5 4.513 7.5 -4.513 

10 5.210 10 -5.210 
15 Ii. :3:1a 15 -1i.3a3 
20 7.188 20 -7.188 
25 7.M8 2.> -7.848 
30 8.346 30 -8.346 
35 8. 701 35 -8.701 
40 8.918 40 -8.918 
4.> 8. 998 45 -8.998 
50 8.942 50 -8.942 
5, 8.733 55 -8.733 
liO 8.323 60 -8.323 
Ii.> 7.580 fi.1) -7.580 
70 H. fi97 70 -Ii. 597 
75 5.451 75 -5.451 
80 4.201i 80 -4.206 
85 2.934 85 -2.934 
90 1. 714 90 -1.714 
9.> .646 9.> -.646 

100 0 100 0 

L. E. radius: 1.9.55 

----. 

NACA 664-221 
{Stations and ordinates given in percent of 

airfoil chord] 

Up""r surfa~-e Lower surface 
-------

Station Ordinaw Station Ordinat<' 
---_._---------

() 0 0 II 
.372 1. 570 .628 -1.470 
.610 • • 1.8ti9 .890 -1.729 

I. 095 2.342 1.405 -2.128 
2.323 3. 221i 2.li77 -2.854 
4.S00 4.580 5.200 -3.948 
7.291 5.ti53 7.709 -4.805 
9.788 6.51i5 10.212 -5. sal 

14.797 8.039 15.20:1 -li.ti9a 
19.815 9.170 20.185 -7.578 
24.MO 10.047 25. HiO -8. 2m 
29.869 10.709 30.131 -8.7Ii5 
34.900 11.183 35.100 -9.123 
39.933 11.478 40.01i7 -9.336 
44.967 11. 595 45.0:3:! -9.405 
50.000 H.lm 50.0110 -9.:331 
55.032 11.281 54.968 -9.091 
60.063 HI. 763 59. 937 -8.621 
55.087 9.823 64.913 -7.763 
70.103 8. 581 69.897 -6.6.17 
75.109 7.145 74.891 -5.355 
80.106 5.091 79.894 -3.999 
85.092 3.99(; 84.908 -2.(150 
90.067 2.440 89.933 -1.406 
9.1.034 1.032 94.966 -.400 

100.000 0 100.000 0 

L. g. radius: 2.550 
Rlopu of radius through L. K: 0.084 

--

NACA 663-218 
[Stations an(l ordinates given inpcrccnt of 

airfoil chord] 

Upper surface Lower surface 

Rtation Ordinate Station Ordinate 
------------

0 0 0 0 
.389 1-368 .611 -1.268 
.628 1.636 .872 ·-1.496 

1.115 2.054 1.38S -1.840 
2.346 2.828 2.654 -2.456 
4.827 4.002 5.173 -3.370 
7.320 4.933 7.680 -4.085 
9.818 5.724 10.182 -4.690 

14.825 7.004 15.175 -5.658 
19.M1 1.982 20.159 -6.390 
24.863 8.742 25.137 -6.952 
29.887 9.317 30.113 -7.3iS 
34.914 9.731 35.086 -7.fi71 
39.942 9.989 40.0OR -7.847 
44.971 10.093 45.029 -7.903 
50.000 10.045 50.000 -7.839 
55.028 9.828 54.972 -7.638 
60.054 9.394 59.946 -7.252 
65.075 8.610 64.925 -6.550 
70.089 7..>68 69.911 -.>.624 
75.095 {;.345 74.905 -4.51\5 
80.093 5.001 7l'.907 -3.409 
85.081 3.606 84.919 -2.260 ' 
90.060 2.230 89.940 -1.19fi 
9.>.030 . .961 94.970 -.329 

100.000 0 100.000 0 

1,. E. radiu" 1.955 
Slope of radius through L. K: 0.084 

--

NACA 67,1-215 
[Stations and ordinates given in percent of 

airfoil chord] 

Upper surface I Lower surface 

Station Ordinate Station Ordinate 
-------------

0 0 Ii 0 
.402 1.213 .598 -1.11:1 
.642 1. 460 .858 -1-320 

1. 128 1.867 1.372 -1.553 
2.361 2.577 2.639 -2.205 
4.848 3.557 5.1.52 -2.925 
7.344 4.321 7.656 -3.473 
9.845 4.947 10.155 -3.913 

14.854 5.954 15.146 -4.608 
19.869 5.7:l5 20.131 -5.143 
24.887 7.348 25. 113 -5.558 
29.908 7.825 30.092 -5.881 
34.930 8.185 35.070 -6.125 
:39. 95:1 8.430 40.047 -6.288 
44.976 8.570 45.024 -6.380 
50.000 8. f>OO 50.000 -0.394 
55.024 8.516 54.976 -6.326 
f~l. 047 8.302 59.953 -6.160 
65.068 7.935 64.932 -5.875 
70.086 7.3?:! 69.914 -5.429 
75.098 6.515 74.902 -4.725 
80.100 5.335 79.900 -3.743 
85.092 :l.999 M.908 -2.65.1 
90.071 2.5:l7 89.929 -1. 5Q.1 
95.037 L 103 94.963 -.471 

100.000 0 100.000 0 

L. K radius: 1.52:3 
Rlope of radius through L. E.: 0.084 

- -

NACA 663-41 8 
{ Stations and ordinates !!ivcn in percent of 

airfoil chord) 

Upper surface Lower surface 
-------------

Station Ordinate Station Ordinate 
--------------

0 0 0 0 
.280 1.405 .720 -1.205 
.509 1.692 .991 -1.412 

'.981 2.147 L 519 -l. 719 
2.194 3.000 2.806 -2.256 
4.656 4.306 5.344 -3.042 
7.140 5.347 7.860 -3.651 
9.636 6.231 10.364 -4.163 

14.651 7.669 15.349 -4.977 
19.683 8.773 20.317 -5.589 
24.726 9.633 25.274 -6.0sa 
29.775 10.287 30.225 -6.399 
34.829 10.759 35.171 -6.639 
39.885 11. U59 40.115 -6.775 
44.943 11.188 45.057 -6.808 
50.000 11.148 50.000 -6.736 
55.056 10. 923 54.944 -6.543 
60.107 10.464 59.893 -6.180 
65.149 9.639 64.851 -5.519 
70.178 8.539 69.822 -4.651 
75.191 7.238 74.809 -3.658 
80.185 5.794 79.815 -2.610 
85.162 4.276 84.838 -1.584 
90.120 2.744 89.880 -.676 
95.060 1.275 94.940 -.011 

100.000 0 100.000 0 

L. E. radius: 1.955 
Slope of radius through L. E.: 0.168 

I 

NACA 747A315 
(Stations and ordinates given in percent of 

airfoil chord] 

Upper surface Lower surface 
--------------

Station Ordinate Station Ordinate 
---------------

0 0 0 0 
.229 1.30.> .771 -1.031 
.449 1. 599 1.051 -1.207 
.911 2.065 1.589 -1.473 

2.109 2.935 2.891 -1.927 
4.564 4.264 5.436 -2.518 
7.05.1 5.2l'6 7.947 -2.952 
9.558 6.140 10.442 -3.304 

14.599 7.497 15.401 -3.M3 
19. 668 8.503 20.332 -4.247 
24.758 9.242 25.242 -4.546 
29.867 9.731 30.133 -4.773 
35.001 9.982 34.999 -4.926 
40.200 9.962 39.800 -5.020 
45.375 9.572 44.625 -5.040 
50.447 8.964 49.553 -5.014 
55.463 8. 206 54.sa7 -4.930 
60.435 7.324 59.565 -4.772 
65.366 6.365 64.6:34 -4.509 
70.241 5.354 69.759 -4.ll0 
75.130 4.336 74.870 -.3.502 
80.073 3.295 79.927 -2.743 
85.0~8 2.257 84.962 -1.915 
90.016 1.289 89.984 -1.097 
95.004 .481 94.996 -.405 

100.000 0 100.000 0 

L. E. radius: 1.544 
Slope of radiUS through L. E.: 0.232 

.- -

/ 

NACA 664-021 
{Stations and ordinates given in percent 01 

airfoil chord] 

_.~~prr su~ace. J I,ower surface 

Station Ordinate Station Ordinate 
---------------

0 0 0 0 
.5 1. 525 .5 -1. 52.5 
.75 1.804 .75 -1.804 

1.25 2.240 l.25 -2.240 
2.5 3.045 2.5 -3.045 
5.0 4.269 5.0 -4.269 
7.5 5.233 7.5 -5.283 

10 6.052 10 -6.052 
15 7.369 15 -7.369 
20 8.376 20 -8.376 
25 9.153 25 -9.1sa 
30 9. 738 30 -9. 738 
35 10.154 35 -10.154 
40 10.407 40 -10.407 
45 10.500 45 -10.500 
50 10.434 50 -10.434 
55 10.186 55 -10.186 
60 9.692 60 -9.692 
65 8. 793 65 -8. 793 
70 7.610 70 -7.610 
75 6.251 75 -6.251 
80 4.796 80 -4.796 
85 3.324 85 -3.324 
90 1.924 90 -1.924 
95 .717 95 -.717 

100 0 100 0 

L. E. radius: 2.550 
_ .. - -

NACA747A415 
[Stations and ordinates given in percent of 

airfoil chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 
---------------

0 0 0 0 
.183 l.318 .817 -.994 
.398 1.622 1.102 -1.160 
.852 2.106 1.648 -1.406 

2.041 3.01ti 2.959 -1. 822 
4.487 4.4ll 5.513 -2.349 
6.972 5.488 8.028 -2.730 
9.476 6.390 10.524 -3.038 

14.521 7.827 15.479 -3.501 
19.1'98 8.897 20.402 -3.845 
24.698 9.687 25.302 -4.095 
29.818 10.216 :lO.182 -4.286 
34.964 10.497 35.036 -4.411 
40.176 10.499 39.824 -4.485 
45.364 10.121 44.636 -4.493 
50.447 9.516 49.5.13 -4.462 
55.474 8.753 54.526 -4.381 
60.454 7.859 59.546 -4.215 
65.393 6.878 64.607 -3.992 
70.273 5.838 69.727 -3.622 
75.164 4.78.1 74.8.16 -3.053 
80.107 3.692 79.893 -2.344 
85.066 

1

2

.

592 84.934 -1.578 
90.037 1. 546 89.963 -.&38 
95.015 .639 94.985 -.247 

100.000 0 100.000 0 
I 

L. E. radius: 1.544 I Slope of radius through L. E.: 0.274 I 
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NACA 63,4-420 with flap 
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(b) Aerodynamic characteristics with hinge location 1. R = 6'X 106• 

NACA 63,4-420 airfoil section with 0.25c slotted flap. 
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(d) I.lft and moment characteristics. Slotted flap deflected 220; R=6XIO«. 
N ACA 66(215)-216, a=0.6 airfoil section with 0.30c slotted and O.lOe plain flap 
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Positive directions of axes and angles (forces and moments) are shown by arrows 

Axis Moment about axis Angle Velocities 

Sym-Designation bol 

LongitudinaL ______ X 
LateraL _____________ Y 
N ormaL _____________ Z 

Absolute coefficients of moment 
L M 

0,= qbS Om= qcS 
(rolling) (pitching) 

Force 
(parallel 
to axis) 
symbol Designation 

X Rolling _______ 
Y Pitching. __ . __ 
Z Yawing. __ . ___ 

N 
O"=qbS 
(yawing) 

Sym-
bol 

L 
M 
N 

I 

Linear 
Positive Designa- Sym- (compo-
direction tion bol nent along Angular 

axis) 

Y----+Z RoIL _______ 

'" 
u p 

Z----+X PitclL ___ . __ I) v q 
X---+Y Yaw ________ 

'" w r 

Angle of set of control surface (relative to neutral 
position), o. (Indicate surface by proper subscript.) 

4. PROPELLER SYMBOLS 

D 
P 
p/D 
V' 
V. 

T 

Q 

Diameter 
Geometric pitch 
Pitch ratio 
Inflow velocity 
Slipstream velocity 

Thrust, absolute coefficient OT= ;D4 
pn 

Torque, absolute coefficient Oa= ~nr. 
pn LF 

p 

0, 

1/ 
n 

Power, absolute coefficient Op= fD6 
pn 

6/ V 5 
Speed-power coefficiellt= -V ~nj 
Efficiency 
Revolutions per second, rps 

Effective helix angle=tan- I (2
V 

) 
7rrn 

5. NUMERICAL RELATIONS 

1 hp=76.04 kg-m/s=550 ft-lb/sec 
1 metric horsepower=O.9863 hp 
1 mph=0.4470 mps 
1 mps=2.2369 mph 

1 Ib=0.4536 leg 
1 kg=2.2046 Ib 
1 mi= 1,609.35 m=5,280 ft 
1 m=3.2808 ft 


